Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

Disinfectants are commonly used in households, hospitals, in drug manufacturing, in food processing. With the ever-increasing antibiotic-resistance of microorganisms, it is crucial to rationally apply disinfectants in suitable concentrations, with proper active substance, as not all substances affect various organisms in the same way. Among the microorganisms that are particularly difficult to kill, there are bacteria producing spores - forms that have different structure and sensitivity to disinfectants than the vegetative forms. The aim of the study has been to examine the influence of frequently used disinfectant compounds upon the spores of bacteria of the Bacillus genus: B. cereus, B. mycoides, and B. subtilis. In the study of disinfectants the findings showed that the disinfectants with the best results against spores are: peracetic acid, hydrogen peroxide in concentrations of 30% as well as 5%, and Lysoformin 3000. The least efficient in fighting spores proved to be Isopropanol and Promanum N. Differentiation has been found to exist in the reaction of specific species to the preparation Rafasept, as B. subtilis occurred to be very sensitive to that compound, whereas Rafasept turned out to be ineffective in the case of B. mycoides and B. cereus.
Go to article

Abstract

Biological control of plant diseases is strongly emerging as an effective alternative to the use of chemical pesticides and fungicides. Stress tolerance is an important attribute in the selection of bacteria for the development of microbial inoculants. Fourteen salt-tolerant bacteria showing different morphological features isolated from the rhizosphere of maize were evaluated for different plant growth-promoting activities. All isolates showed auxin production ranging from 5 to 24 μg ⋅ ml–1 after 48 h incubation in tryptophan supplemented media. Phosphate solubilization ranged from 15 to 419 μg ⋅ ml–1. 1-aminocycloproprane- 1-carboxylate (ACC) deaminase activity was shown by 6 isolates, ammonia production by 9 isolates, siderophore production by 8 isolates while HCN production by 4 isolates. Four bacterial isolates with all plant growth-promoting properties also showed strong antagonistic activities against Fusarium oxysporum, F. verticillioides, Curvularia lunata and Alternaria alternata and abiotic stress tolerance against salinity, temperature, pH and calcium salts. Two selected bacterial isolates significantly enhanced the growth of pea and maize test plants under greenhouse conditions. The bacterial isolate M1B2, which showed the highest growth promotion of test plants, was identified as Bacillus sp. based on phenotypic and 16S rDNA gene sequencing. The results indicated that Bacillus sp. M1B2 is a potential candidate for the development of microbial inoculants in stressful environments.
Go to article

Abstract

The use of Bacillus thuringiensis (Bt) to control insect pests has already been established in various agronomic and forest crops. It is a bacterium that does not pollute the environment, is safe for mammals and vertebrates, lacks toxicity to plants and specifically targets insects. To date in-depth studies have not been conducted about the use of Bt to control the main pest of mahogany (Swietenia macrophylla King) and other Meliaceae species, the Hypsipyla grandella Zeller (Lepidoptera: Pyralidae). Therefore, this study aimed to test the pathogenicity of Bt strains on H. grandella caterpillars, as well to determine the lethal concentration required to kill 50% of the population (LC50) of the most promising strains. Ten strains of Bt toxic to lepidopteran proven in previous trials were used and these were incorporated into a natural diet with mahogany seeds to check their mortality. The LC50 of the top five strains was determined. The results indicate that H. grandella is highly susceptible to Bt toxins and the S1905 strain is highly toxic. Therefore, the use of Bt strains may be a tool to be incorporated into the integrated management of this important pest.
Go to article

Abstract

High intake of over-the-counter, non-steroidal anti-inflammatory drugs, such as ibuprofen, has resulted in their presence in wastewaters and surface waters. The potentially harmful effect of ibuprofen present in the waters has led to a search for new methods of drugs’ removal from the environment. One of the most important technological and economical solutions comprises microbiological degradation of these resistant pollutants. Searching for new strains able to degrade ibuprofen could be one of the answers for increasing the detection of pharmaceuticals in the waters. In this study, the ability of bacterial strain Bacillus thuringiensis B1(2015b) to remove ibuprofen is described. Bacteria were cultured in both monosubstrate and cometabolic systems with 1, 3, 5, 7 and 9 mg L-1 ibuprofen and 1 g L-1 glucose as a carbon source. Bacillus thuringiensis B1(2015b) removed ibuprofen up to 9 mg L-1 in 232 hours in the monosubstrate culture, whereas in the cometabolic culture the removal of the drug was over 6 times faster. That is why the examined strain could be used to enhance the bioremediation of ibuprofen.
Go to article

This page uses 'cookies'. Learn more