Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The article describes the process of creating 3D models of architectural objects on the basis of video images, which had been acquired by a Sony NEX-VG10E fixed focal length video camera. It was assumed, that based on video and Terrestrial Laser Scanning data it is possible to develop 3D models of architectural objects. The acquisition of video data was preceded by the calibration of video camera. The process of creating 3D models from video data involves the following steps: video frames selection for the orientation process, orientation of video frames using points with known coordinates from Terrestrial Laser Scanning (TLS), generating a TIN model using automatic matching methods. The above objects have been measured with an impulse laser scanner, Leica ScanStation 2. Created 3D models of architectural objects were compared with 3D models of the same objects for which the self-calibration bundle adjustment process was performed. In this order a PhotoModeler Software was used. In order to assess the accuracy of the developed 3D models of architectural objects, points with known coordinates from Terrestrial Laser Scanning were used. To assess the accuracy a shortest distance method was used. Analysis of the accuracy showed that 3D models generated from video images differ by about 0.06 รท 0.13 m compared to TLS data.
Go to article

Abstract

The paper deals with evaluation of a 3D scanning method elaborated by the authors, by applying it to the analysis of the wear of forging tools. The 3D scanning method in the first place consists in the application of scanning to the analysis of changes in geometry of a forging tool by way of comparing the images of a worn tool with a CAD model or an image of a new tool. The method was evaluated in the context of the important measurement problems resulting from the extreme conditions present during the industrial hot forging processes. The method was used to evaluate wear of tools with an increasing wear degree, which made it possible to determine the wear characteristics in a function of the number of produced forgings. The following stage was the use it for a direct control of the quality and geometry changes of forging tools (without their disassembly) by way of a direct measurement of the geometry of periodically collected forgings (indirect method based on forgings). The final part of the study points to the advantages and disadvantages of the elaborated method as well as the potential directions of its further development.
Go to article

Abstract

The present article deals with the possibility of using the reverse engineering method for the production of prototype molds by Patternless process technology. Article describes method how to obtain virtual model by using a 3D scanner. Article also explains principle of the Patternless process technology, which is based on the milling mold cavity using CNC machining equipment. The aim of the research is the use of advanced technologies that speed up and facilitate the process of production prototype mold. The practical result of the presented experiment is bronze casting, which serves as a foot rest bracket on historic bike.
Go to article

This page uses 'cookies'. Learn more