Search results

Filters

  • Journals
  • Date

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

This paper presents the design, fabrication and testing of an improved thin-film thermal converter based on an electro-thermally excited and piezo-resistively detected micro-bridge resonator. The resonant thermal converter comprises a bifilar heater and an opposing micro-bridge resonator. When the micro-bridge resonator absorbs the radiant heat from the heater, its axial strain changes, then its resonant frequency follows. Therefore the alternating voltage or current can be transferred to the equivalent DC quantity. A non-contact temperature sensing mechanism eliminates heat loss from thermopiles and reduces coupling capacitance between the temperature sensor and the heater compared with traditional thin-film thermal converters based on thermopiles. In addition, the quasi-digital output of the resonant thin-film thermal converter eliminates such problems as intensity fluctuations associated with analogue signals output by traditional thin-film thermal converters. Using the fast-reversed DC (FRDC) method, the thermoelectric transfer difference, which determines the frequency-independent part of the ac-dc transfer difference, is evaluated to be as low as 1:1 #1; 10��6. It indicates that the non-contact temperature sensing mechanism is a feasible method to develop a high-performance thermal converter.
Go to article

Abstract

Microwave sintering process was employed to agglomerate ferromanganese alloy powders. The effects of sintering temperature, holding time and particle size composition on the properties and microstructure of sintering products were investigated. The results was shown that increasing sintering temperature or holding time appropriately is beneficial to increase the compressive strength and volume density. SEM and EDAX analysis shows that the liquid phase formed below the melting point in the sintering process, which leads to densification. XRD patterns indicate that the main reaction during microwave sintering is the decarbonization and carburization of iron carbide phase. The experiment demonstrate that the optimum microwave sintering process condition is 1150°C, 10 min and 50% content of the powders with the size of –75 μm
Go to article

This page uses 'cookies'. Learn more