Search results

Filters

  • Journals
  • Date

Search results

Number of results: 39
items per page: 25 50 75
Sort by:

Abstract

The primary evaluation of the economic losses caused by water pollution in Shanghai in the year 2009 is made by classification approach in order to provide basis for decision of the relative water management policy. The result shows that the portion of water pollution losses in GDP of Shanghai was 2.7%, which was still lower than the average level of whole China despite of the local high population density and the scale of industry, suggesting to some extent the continuous attention in water protection paid by Shanghai government.
Go to article

Abstract

Heterogeneous nuclear ribonucleoprotein K (hnRNP K), is a multifunctional protein that participates in a variety of regulatory processes of signal transduction and gene expression. To further characterize the significance of hnRNP K in different male germ cells, we investigated the expression profiles of hnRNP K at different developmental stages in pig and rat testes, and conducted a comparative analysis of expression patterns between these two species. In porcine testis development, both the mRNA and protein level of hnRNP K were down-regulated from 3 months to 8 months. However, the expression level of hnRNP K was abundant across the embryonic period in rats, and decreased gradually from 0 day post partum (dpp) to 14 dpp, then increased with the highest level presenting at 90 dpp. Immunolocalization analysis further confirmed the differential expression and localization of hnRNP K protein during testis development in pigs and rats. The results showed that hnRNP K was widely distributed in gonocytes, spermatogonia, sertoli cells and Leydig cells. The dynamic expression profile of hnRNP K may imply its crucial and potential roles in the development of the testis, which will provide a theoretical basis for the future study of molecular mechanism regulation of spermatogenesis.
Go to article

Abstract

A mixed pseudo-orthogonal frequency coding (Mixed-POFC) structure is proposed as a new spreadspectrum technique in this paper, which employs frequency and time diversity to enhance tag properties and balances the spectrum utilization and code diversity. The coding method of SAW RFID tags in this paper uses Mixed-POFC with multi-track chip arrangements. The cross-correlation and auto correlation of Mixed-POFC and POFC are calculated to demonstrate the reduced overlap between the adjacent center frequencies with the Mixed-POFC method. The center frequency of the IDT and Bragg reflectors is calculated by a coupling of modes (COM) module. The combination of the calculation results of the Bragg reflectors shows that compared with a 7-chip POFC, the coding number of a 7-chip Mixed-POFC is increased from 120 to 144 with the same fractional bandwidth of 12%. To demonstrate the validity of Mixed-POFC, finite element analysis (FEA) technology is used to analyze the frequency characteristics of Mixed-POFC chips. The maximum error between designed frequencies and simulation frequencies is only 1.7%, which verifies that the Mixed-POFC method is feasible.
Go to article

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.
Go to article

Abstract

With the increasing penetration rate of grid-connected renewable energy generation, the problem of grid voltage excursion becomes an important issue that needs to be solved urgently. As a new type of voltage regulation control method, electric spring (ES) can alleviate the fluctuations of renewable energy output effectively. In this paper, the background and basic principle of the electric spring are introduced firstly. Then, considering the influence of an electric spring on noncritical load voltage, noncritical loads are classified reasonably, and based on the electric spring phasor diagram, the control method to meet the noncritical load voltage constraint is proposed. This control method can meet the requirements of voltage excursions of different kinds of noncritical load, increase the connection capacity of the noncritical load and improve the voltage stabilization capacity of the electric spring. Finally, through the simulation case, the feasibility and validity of electric spring theory and the proposed control method are verified.
Go to article

Abstract

The effects of Mg and Ca on sulfide modification of sulphur steel were studied to elucidate the difference between micromagnesium treatment and micro-calcium treatment for the inclusion of sulphur steel. The results show that the inclusions in the steel appeared with an oxide core of Al2O3 and MnS wrapped. After the addition of Mg, the core was changed to spinel, and the MnS coating was changed to Mn-Mg-S. After Ca was added, the core was changed to Ca-Al-O, and the MnS coating was changed to Mn-Ca-S. The Mg content was higher than Ca content in the sulfides of the steel. Therefore, Mg was more effective than Ca in terms of sulfide modification with the same content of Mg and Ca in steel, but the yielding rate of Mg was lower than that of Ca. The Mg content in the oxide core was higher than Mg of the coating of the inclusions in the steel treated with Mg or Mg-Ca. In contrast, the Ca content in the oxide core was lower than Ca of the coating of the inclusions in the steel treated with Ca or Mg-Ca. MnS formed and precipitated during the melt solidification process. The complex sulfide (Mg-Mn-S) was precipitated around MgO·Al2O3 in the Mg treated steel during the cooling process. CaS inclusion was precipitated on the CaO·Al2O3 inclusions in the liquid Ca-treated steel. Thus, CaS was formed first, whereas MnS was formed during the cooling process, followed by the formation of complex sulfide (CaS+MnS), which finally precipitated around CaO·Al2O3 in the Ca-treated steel.
Go to article

Abstract

In vitro embryogenic callus is a critical factor for genetic transformation of rice, especially for indica varieties. In this study, we investigated the relationship between polyamines, including putrescine (Put), spermidine (Spd) and spermine (Spm), and callus browning, and we studied the effect of exogenous Put on callus regeneration and on the content of endogenous polyamines. In addition, the expression levels of arginine decarboxylase gene (Adcl) and S-adenosylmethionine decarboxylase gene (Samdc) in embryogenic callus were studied by quantitative Real-time PCR analysis. The results showed that the contents of endogenous Put and Spd in the browning callus were significantly lower than those in normal callus. Exogenous Put could effectively improve the growing state of callus of indica rice and enhance the development of embryogenic callus. The content of endogenous polyamines in embryogenic callus, especially Spd and Spm, was increased after addition of exogenous Put. Additionally, exogenous Put also had an obvious impact on the expression levels of Adcl but partial effect on the expression levels of Samdc gene. This study could increase the knowledge of both embryogenic callus induction and polyamine catabolism in callus in indica rice.
Go to article

Abstract

Reliable estimation of longitudinal force and sideslip angle is essential for vehicle stability and active safety control. This paper presents a novel longitudinal force and sideslip angle estimation method for four-wheel independent-drive electric vehicles in which the cascaded multi-Kalman filters are applied. Also, a modified tire model is proposed to improve the accuracy and reliability of sideslip angle estimation. In the design of longitudinal force observer, considering that the longitudinal force is the unknown input of the electric driving wheel model, an expanded electric driving wheel model is presented and the longitudinal force is obtained by a strong tracking filter. Based on the longitudinal force observer, taking into consideration uncertain interferences of the vehicle dynamic model, a sideslip angle estimation method is designed using the robust Kalman filter and a novel modified tire model is proposed to correct the original tire model using the estimation results of longitudinal tire forces. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.
Go to article

Abstract

This paper presents a novel sideslip angle estimator based on the pseudo-multi-sensor fusion method. The kinematics-based and dynamics-based sideslip angle estimators are designed for sideslip angle estimation. Also, considering the influence of ill-conditioned matrix and model uncertainty, a novel sideslip angle estimator is proposed based on the wheel speed coupling relationship using a modified recursive least squares algorithm. In order to integrate the advantages of above three sideslip angle estimators, drawing lessons from the multisensory information fusion technology, a novel thinking of sideslip angle estimator design is presented through information fusion of pseudo-multi-sensors. Simulations and experiments were carried out, and effectiveness of the proposed estimation method was verified.
Go to article

Abstract

The research on the coupling electromagnetic effect was studied in this paper, in consideration of the wreaking damage of the powerful electromagnetic pulse to the electronic products. The characteristic of the metallic via and stub interconnect with the coupling voltage was calculated by the model, which was the transfer function F( f ) of the protection circuit parameters of DC power source. The research showed that: the smaller radius of Metallic via, the lower amplitude of F( f ), the less energy of a power electro- magnetic pulse (PEP); the higher increase of the width of the stub interconnect, the bigger reduction of the characteristic impedance of plane wave coupling, the depth of the notch band significantly narrowed. The simulations and experiments were done to compare the protection effects of protection circuits with different parameters at last. The results showed that the protection circuit designed could be highly advantageous in protecting the DC power source in this article.
Go to article

Abstract

Mg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320 o C) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200 o C) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.
Go to article

Abstract

As the most recent video coding standard, High Efficiency Video Coding (HEVC) adopts various novel techniques, including a quad-tree based coding unit (CU) structure and additional angular modes used for intra encoding. These new techniques achieve a notable improvement in coding efficiency at the penalty of significant computational complexity increase. Thus, a fast HEVC coding algorithm is highly desirable. In this paper, we propose a fast intra CU decision algorithm for HEVC to reduce the coding complexity, mainly based on a key-point detection. A CU block is considered to have multiple gradients and is early split if corner points are detected inside the block. On the other hand, a CU block without corner points is treated to be terminated when its RD cost is also small according to statistics of the previous frames. The proposed fast algorithm achieves over 62% encoding time reduction with 3.66%, 2.82%, and 2.53% BD-Rate loss for Y, U, and V components, averagely. The experimental results show that the proposed method is efficient to fast decide CU size in HEVC intra coding, even though only static parameters are applied to all test sequences.
Go to article

This page uses 'cookies'. Learn more