Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 17
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Senecavirus A (SVA) the only member of the Senecavirus genus within the Picornaviridae family, is an emerging pathogen causing swine idiopathic vesicular disease and epidemic transient neonatal losses. Here, SVA strain (CH-HNKZ-2017) was isolated from a swine farm exhibiting vesicular disease in Henan Province of Central China. A phylogenetic analysis based on complete genome sequence indicated that CH-HNKZ-2017 was closely related to US-15-40381IA, indica- ting that a new SVA isolate had emerged in China.
Przejdź do artykułu

Abstrakt

In the current study, twenty lambs, aged 4 months, half male and half female, were classified into four groups, with five in each group. The experimental three groups of lambs were given intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations of recombinant ovine interferon-τ (roIFN-τ). The fourth group (normal control) of lambs was given normal saline injections in the same way. After administrations, blood samples were collected from the tested animals at different time points post injection, and the serum titers of roIFN-τ were measured using cytopathic effect (CPE) inhibition bioassay. The results of calculating pharmacokinetic (PK) parameters using DAS software showed that the PK characteristics of roIFN-τ through IV injection conformed to the two-compartment open model, whose half-life of distribution phases (T1/2α) was 0.33±0.034 h and the elimination half-life(T1/2β) was 5.01±0.24 h. However, the PK features of IM injection and SC injection of roIFN-τ conformed to the one compartment open model, whose Tmax were 3.11±0.26 h and 4.83±0.43 h, respectively, together with an elimination half life(T1/2β) of 9.11±0.76 h and 7. 43±0.58 h, and an absorption half-life (T1/2k(a)) of 1.13±0.31 h and 1.85±0.40 h, respectively. The bioavailability of roIFN-τ after IM administration reaches 73.57%, which is greater than that of SC administration (53.43%). These results indicate that the drug administration effect can be preferably obtained following a single dose IM administration of the roIFN-τ aqueous preparation. This study will facilitate the clinical application of roIFN-τ as a potential antiviral agent in future work.
Przejdź do artykułu

Abstrakt

Vaccination is a common routine for prevention and control of human and animal diseases by inducing antibody responses and cell-mediated immunity in the body. Through vaccinations, smallpox and some other diseases have been eradicated in the past few years. The use of a patho- gen itself or a subunit domain of a protein antigen as immunogens lays the basis for traditional vaccine development. But there are more and more newly emerged pathogens which have expe- rienced antigenic drift or shift under antibody selective pressures, rendering vaccine-induced im- munity ineffective. In addition, vaccine development has been hampered due to problems includ- ing difficulties in isolation and culture of certain pathogens and the antibody-dependent enhancement of viral infection (ADE). How to induce strong antibody responses, especially neu- tralizing antibody responses, and robust cell-mediated immune responses is tricky. Here we re- view the progress in vaccine development from traditional vaccine design to reverse vaccinology and structural vaccinology and present with some helpful perspectives on developing novel vac- cines.
Przejdź do artykułu

Abstrakt

In a series of recent papers we have shown how the continuum mechanics can be extended to nano-scale by supplementing the equations of elasticity for the bulk material with the generalised Young-Laplace equations of surface elasticity. This review paper begins with the generalised Young-Laplace equations. It then generalises the classical Eshelby formalism to nano-inhomogeneities; the Eshelby tensor now depends on the size of the inhomogeneity and the location of the material point in it. The generalized Eshelby formalism for nano-inhomogeneities is then used to calculate the strain fields in quantum dot (QD) structures. This is followed by generalisation of the micro-mechanical framework for determining the effective elastic properties of heterogeneous solids containing nano-inhomogeneities. It is shown that the elastic constants of nanochannel-array materials with a large surface area can be made to exceed those of the non-porous matrices through pore surface modification or coating. Finally, the scaling laws governing the properties of nano-structured materials are given.
Przejdź do artykułu

Abstrakt

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.
Przejdź do artykułu

Abstrakt

In order to predict the distribution of shrinkage porosity in steel ingot efficiently and accurately, a criterion R√L and a method to obtain its threshold value were proposed. The criterion R√L was derived based on the solidification characteristics of steel ingot and pressure gradient in the mushy zone, in which the physical properties, the thermal parameters, the structure of the mushy zone and the secondary dendrite arm spacing were all taken into consideration. The threshold value of the criterion R√L was obtained with combination of numerical simulation of ingot solidification and total solidification shrinkage rate. Prediction of the shrinkage porosity in a 5.5 ton ingot of 2Cr13 steel with criterion R√L>0.21 m・℃1/2・s -3/2 agreed well with the results of experimental sectioning. Based on this criterion, optimization of the ingot was carried out by decreasing the height-to-diameter ratio and increasing the taper, which successfully eliminated the centreline porosity and further proved the applicability of this criterion.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji