Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Investigations on integration of optoelectronic components with LTCC (low temperature co-fired ceramics) microfluidic module are presented. Design, fabrication and characterization of the ceramic structure for optical absorbance is described as well. The geometry of the microfluidic channels has been designed according to results of the CFD (computational fluid dynamics) analysis. A fabricated LTCC-based microfluidic module consists of an U-shaped microchannel, two optical fibers and integrated light source (light emitting diode) and photodetector (light-to-voltage converter). Properties of the fabricated microfluidic system have been investigated experimentally. Several concentrations of potassium permanganate (KMnO4) in water were used for absorbance/transmittance measurements. The test has shown a linear detection range for various concentrations of heavy metal ions in distilled water. The fabricated microfluidic structure is found to be a very useful system in chemical analysis.
Go to article

Abstract

The numerical investigation of the mixing process in complex geometry micromixers, as a function of various inlet conditions and various micromixer vibrations, was performed. The examined devices were two-dimensional (2D) and three-dimensional (3D) types of serpentine micromixers with two inlets. Entering fluids were perturbed with a wide range of the frequency (0 - 50 Hz) of pulsations. Additionally, mixing fluids also entered in the same or opposite phase of pulsations. The performed numerical calculations were 3D to capture the proximity of all the walls, which has a substantial influence on microchannel flow. The geometry of the 3D type serpentine micromixer corresponded to the physically existing device, characterised by excellent mixing properties but also a challenging production process (Malecha et al., 2009). It was shown that low-frequency perturbations could improve the average mixing efficiency of the 2D micromixer by only about 2% and additionally led to a disadvantageously non-uniform mixture quality in time. It was also shown that high-frequency mixing could level these fluctuations and more significantly improve the mixing quality. In the second part of the paper a faster and simplified method of evaluation of mixing quality was introduced. This method was based on calculating the length of the contact interface between mixing fluids. It was used to evaluate the 2D type serpentine micromixer performance under various types of vibrations and under a wide range of vibration frequencies.
Go to article

This page uses 'cookies'. Learn more