Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 400
items per page: 25 50 75
Sort by:

Abstract

In highly developed countries, a significant progress in the use of alternative and clean energy sources has recently been observed. The European Union has implemented a programme to build wind turbines. It is estimated that in the coming years, thanks to the support in tax and credit, the global energy will develop very intensively. Many components of the wind turbines are castings. The basic material used for these castings is ductile iron, which in this particular case must meet high requirements imposed by the operating conditions of wind turbines. Anticipating an increase in customer demand for this type of castings, Krakodlew SA has decided to modernize its foundry using the ability to obtain external financing. The ductile iron manufacturing technology is now being developed and adapted to the specific conditions of the foundry plant, including the melting process yielding cast material with the required chemical composition, the technology of moulding, and the conditions for possible secondary metallurgy, spheroidizing treatment and graphitizing inoculation. The fulfilment of the imposed conditions for the casting production demands the use of advanced casting technologies introduced to the manufacturing process. The development of technology to launch the production of ductile iron castings for the wind power industry was supported by The National Centre for Research and Development (NCBiR). This article presents part of research on the binding kinetics of furan resin sands and choice of their composition for moulds and cores to make heavy castings used as components of equipment for the wind power industry.
Go to article

Abstract

Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE) which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered). The external heating (a laser action) is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium) the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.
Go to article

Abstract

The article presents an analysis and evaluation of the accident rate in selected European Union countries. On the basis of available statistical data, the analysis of accidents in various sectors of the European Union economy was carried out. Afterwards, a ranking of countries regarding accidents in the construction industry was developed. For the selected representative countries, analysis of changes in the indicators which characterize the accident rate during the period between 2008 and 2012 was carried out. Conclusions resulting from the conducted research were formulated.
Go to article

Abstract

Turbine blades have complex geometries with free form surface. Blades have different thickness at the trailing and leading edges as well as sharp bends at the chord-tip shroud junction and sharp fins at the tip shroud. In investment casting of blades, shrinkage at the tip-shroud and cord junction is a common casting problem. Because of high temperature applications, grain structure is also critical in these castings in order to avoid creep. The aim of this work is to evaluate the effect of different process parameters, such as, shell thickness, insulation and casting temperature on shrinkage porosity and grain size. The test geometry used in this study was a thin-walled air-foil structure which is representative of a typical hot-gas-path rotating turbine component. It was observed that, in thin sections, increased shell thickness helps to increase the feeding distance and thus avoid interdendritic shrinkage. It was also observed that grain size is not significantly affected by shell thickness in thin sections. Slower cooling rate due to the added insulation and steeper thermal gradient at metal mold interface induced by the thicker shell not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections.
Go to article

Abstract

Optical low-coherence interferometry is one of the most rapidly advancing measurement techniques. This technique is capable of performing non-contact and non-destructive measurement and can be used not only to measure several quantities, such as temperature, pressure, refractive index, but also for investigation of inner structure of a broad range of technical materials. We present theoretical description of low-coherence interferometry and discuss its unique properties. We describe an OCT system developed in our Department for investigation of the structure of technical materials. In order to provide a better insight into the structure of investigated objects, our system was enhanced to include polarization state analysis capability. Measurement results of highly scattering materials e.g. PLZT ceramics and polymer composites are presented. Moreover, we present measurement setups for temperature, displacement and refractive index measurement using low coherence interferometry. Finally, some advanced detection setups, providing unique benefits, such as noise reduction or extended measurement range, are discussed.
Go to article

This page uses 'cookies'. Learn more