Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:

Abstract

The Intrauterine fetal development process is complicated and affected by many regulating factors such as maternal nutritional status, transcription factors and adipokines. Adipokines are kinds of active substances secreted by adipose tissue, including more than 50 kinds of molecules. To explore the correlation between calf birth weights and adipokines including adiponectin, leptin, visfatin, and IGF-1 in cows venous and venous cord blood. Fifty-four healthy multiparous Chinese Holstein cows were used; in which, cows with a calf weight less than 40 kg were included in group A (n=9); those with a calf weight between 40 kg~45 kg were included in group B (n=25) and ≥45 kg were included in group C (n=20), venous blood and cord venous blood was collected. An ELISA kit was used to evaluate the concentration of adiponectin, leptin, visfatin, and IGF-1, correlations between index-index and index-calf birth weight were analysed. In both cows venous and cord venous blood, adiponectin, leptin, visfatin, and IGF-1 levels were significantly correlated with each other (p<0.01), and levels of these adipokines in venous blood were significantly higher than cord venous blood (p<0.01). Adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were positively correlated with calf birth weights, and significantly correlated with calf birth weights respectively (p<0.01). Our study showed that adiponectin, leptin, and IGF-1 were found in venous blood and cord venous blood, and adiponectin, leptin, and IGF-1 in venous and cord venous blood potentially inter-regulated each other; adiponectin, leptin, and IGF-1 in venous blood were not significantly correlated with calf birth weights, while adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were significantly correlated with calf birth weights, respectively.
Go to article

Abstract

Ludwigite is the main available boron-bearing resource in China. In order to enrich the theory system and optimize its utilization processes, this paper study the mechanism and kinetics on non-isothermal decomposition of ludwigite in inert atmosphere by means of thermal analysis. Results show that, the decomposition of serpentine and szajbelyite is the main cause of mass loss in the process. At the end of decomposition, hortonolite and ludwigite are the two main phases in the sample. The average E value of structural water decomposition is 277.97 kJ/mol based on FWO method (277.17 kJ/mol based on KAS method). The results is proved to be accurate and reliable. The mechanism model function of structural water decomposition is confirmed by Satava method and Popescu method. The form of the most probable model function is G(α) = (1 – α)–1 – 1 (integral form) and f (α) = (1 – α)2 (differential form), and its mechanism is chemical reaction. This is verified by the criterion based on activation energy of model-free kinetics analysis.
Go to article

Abstract

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.
Go to article

Abstract

Geomechnical model testing has been widely applied as a kind of research technique in underground engineering problems. However, during the practical application process, due to the influence of many factors, the desired results cannot be obtained. In order to solve this problem, based on the measurement requirements of the model test, combined with FBG(Fiber Bragg Grating) sensor technology and traditional measurement methods, an FBG monitoring system, Micro-multi-point displacement test system, resistance strain test system and surrounding rock pressure monitoring system are developed. Applying the systems to a model test of the tunnel construction process, the displacement in advance laws of tunnel face, radial displacement distribution laws and surrounding rock pressure laws are obtained. Test results show that a multivariate information monitoring system has the advantage of high precision, stability and strong anti-jamming capability. It lays a solid foundation for the real-time data monitoring of the tunnel construction process model test.
Go to article

Abstract

The friction and wear properties of 201HT aluminum alloys and the corresponding competitive coupons were tested on an electrohydraulic servo face friction and wear testing machine (MM-U10G). The microstructures of the competitive coupons were investigated by scanning electron microscopy (SEM) and consequently the corresponding friction and wear mechanisms were studied. The results demonstrated that: (1) the best competitive material of friction and wear performance of the 201HT was the 201HTC. (2) the 201HTC modified by carbon following the initial mill for oil storage of the micro-groove to be produced, increased the corresponding lubrication performance reduced the friction coefficient and wear rate effectively. (3) the 201HT-201HTC could obtain both better friction and wear mainly due to the initial process of grinding following the 201HT plastic deformation occurred in the surface and the formation of a series of re-melting welding points, whereas the 201HT material hardness would be similar to the 201HTC material hardness, which led into the competitive material friction and wear performance improvement.
Go to article

This page uses 'cookies'. Learn more