## Search results

### Search results

Number of results: 5
items per page: 25 50 75
Sort by:

## Control-volume-based model of the steam-water injector flow

### Abstract

The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.
Go to article

## A study of transcritical carbon dioxide cycles with heat regeneration

### Abstract

The paper presents an efficiency analysis of two transcritical CO2 power cycles with regenerative heaters. For the proposed cycles, calculations of thermal efficiency are given for selected values of operating parameters. It was assumed that the highest working temperature and pressure are in the range from 600 to 700 °C and 40 to 50 MPa, respectively. The purpose of the calculations was optimization of the pressure and mass flows in the regenerative heaters to achieve maximum cycle efficiency. It follows that for the assumed upper CO2 parameters, efficiency of 51-54% can be reached, which is comparable to the efficiency of a supercritical advanced power cycle considered by Dostal.
Go to article

## A definition of near-critical region based on heat capacity variation in transcritical heat exchangers

### Abstract

In the paper, a method for determination of the near-critical region boundary is proposed. The boundary is evaluated with respect to variations of specific heat capacity along isobars. It is assumed that the value of specific heat capacity inside the near-critical region exceeds by more than 50% the practically constant value typical for fluids under normal conditions. It appears that large variations of heat capacity are also present for high-pressure subcritical states sufficiently close to the critical point. Therefore, such defined near-critical region is located not only in supercritical fluid domain but also extends into subcritical fluid. As an example, the boundaries of the near-critical region were evaluated for water, carbon dioxide and R143a.
Go to article

## Experimental observations of flow structures during DEP controlled boiling in a microchannel

### Abstract

The paper presents results of experimental investigation of microchannel boiling flow which was controlled by dielectrophoretic (DEP) restrictor. The DEP restrictor was connected to the microchannel liquid supply tube. Operation of DEP restrictor influenced the flow rate at the microchannel inlet. Resulting changes in flow structures and vapour content along the microchannel were observed and analysed with a high-speed video camera. Video recordings were synchronised with measurements of differential pressure between the channel inlet and outlet. It was found that it is possible to change average void fraction in the microchannel by switching on and off the voltage applied to the restrictor electrodes. However, to achieve significant variation of the void fraction, applied voltage should be of the order of 2000 Vpp. The voltage switching also generates oscillations of the differential pressure. The amplitude of these oscillations is proportional to the voltage magnitude, reaching 35 Pa for 2400 Vpp.
Go to article

## Methodology of heat transfer and flow resistance measurement for matrices of rotating regenerative heat exchangers

### Abstract

The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.
Go to article