Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The organic carbon (OC)-rich, black shale succession of the Middle Triassic Bravaisberget Formation in Spitsbergen contains scattered dolomite-ankerite cement in coarser-grained beds and intervals. This cement shows growth-related compositional trend from non-ferroan dolomite (0–5 mol % FeCO3) through ferroan dolomite (5–10 mol % FeCO3) to ankerite (10–20 mol % FeCO3, up to 1.7 mol % MnCO3) that is manifested by zoned nature of composite carbonate crystals. The d13C (-7.3‰ to -1.8‰ VPDB) and d18O (-9.4‰ to -6.0‰ VPDB) values are typical for burial cements originated from mixed inorganic and organic carbonate sources. The dolomite-ankerite cement formed over a range of diagenetic and burial environments, from early post-sulphidic to early catagenic. It reflects evolution of intraformational, compaction-derived marine fluids that was affected by dissolution of biogenic carbonate, clay mineral and iron oxide transformations, and thermal decomposition of organic carbon (decarboxylation of organic acids, kerogen breakdown). These processes operated during Late Triassic and post-Triassic burial history over a temperature range from approx. 40°C to more than 100°C, and contributed to the final stage of cementation of the primary pore space of siltstone and sandstone beds and intervals in the OC-rich succession.
Go to article

Abstract

Nine samples of basic (dolerite, gabbro) intrusions collected at Bellsund, South Spitsbergen, have been K−Ar dated. Three dates, between 87.8 and 102.9 Ma, obtained from dolerite sills which intrude Carboniferous and Permian deposits in Van Keulenfjorden point to a Cretaceous age of intrusive activity (Diabasodden Suite). The K−Ar dates obtained from dolerite and gabbro which intrude Upper Proterozoic metasedimentary terrane of Chamber− lindalen form two groups: the dates between 97.1 and 178.6 Ma point to a Mesozoic age of the intrusions (Diabasodden Suite); the dates from a tectonized gabbroid (280.9–402.0 Ma) might point to a Late Palaeozoic age of the intrusion. No K−Ar dates which would indicate a Proterozoic age of the basic intrusions were obtained
Go to article

Abstract

The Panorama Point Beds represent a subfacies of the Early to Middle Permian Radok Conglomerate, which is the oldest known sedimentary unit in the Prince Charles Mountains, MacRobertson Land, East Antarctica. This unit records clastic sedimentation in fresh−water depositional system during the early stages of development of the Lambert Graben, a major structural valley surrounded by crystalline highlands in the southern part of Gondwana. It contains common siderite precipitated through early diagenetic processes in the swamp, stagnant water, and stream−flow environments. There are two types of siderite in the Panorama Point Beds: (1) disseminated cement that occurs throughout the sedimentary suc− cession; and (2) concretions that occur at recurrent horizons in fine−grained sediments. The cement is composed of Fe−depleted siderite (less than 90mol%FeCO3)with an elevated con− tent of magnesium, and trace and rare earth elements. It has negative #2;13CVPDB values (−4.5 to −1.5‰). The concretions are dominated by Fe−rich siderite (more than 90mol% FeCO3),with positive 13CVPDB values (+1 to +8‰). There are no noticeable differences in the oxygen (18OVPDB between −20 and −15‰) and strontium (87Sr/86Sr between 0.7271 and 0.7281) iso− topic compositions between the siderite types. The cement and concretions developed in the nearsurface to subsurface environment dominated by suboxic and anoxic methanic degrada− tion of organic matter, respectively. The common presence of siderite in the Panorama Point Beds suggests that fresh−water environments of the Lambert Graben were covered by vegetation, starting from the early history of its development in the Early Permian.
Go to article

Abstract

Radiometric and geochemical studies were carried out at Red Hill in the southern part of King George Island (South Shetland Islands, northern Antarctic Peninsula) on the Bransfield Strait coast. The rock succession at Red Hill has been determined to represent the Baranowski Glacier Group that was previously assigned a Late Cretaceous age. Two formations were distinguished within this succession: the lower Llano Point Formation and the upper Zamek Formation. These formations have stratotypes defined further to the north on the western coast of Admiralty Bay. On Red Hill the Llano Point Formation consists of terrestrial lavas and pyroclastic breccia; the Zamek Formation consist predominantly of fine to coarse tuff, pyroclastic breccia, lavas, tuffaceous mud− , silt−, and sandstone, locally conglomeratic. The lower part of the Zamek Formation contains plant detritus (Nothofagus , dicotyledonous, thermophilous ferns) and numerous coal seams (vitrinitic composition) that confirm the abundance of vegetation on stratovolcanic slopes and surrounding lowlands at that time. Selected basic to intermediate igneous rocks from the succession have been analysed for the whole−rock K−Ar age determination. The obtained results indicate that the Red Hill succession was formed in two stages: (1) from about 51–50 Ma; and (2) 46–42 Ma, i.e. during the Early to Middle Eocene. This, in combination with other data obtained from other Baranowski Glacier Group exposures on western coast of Admiralty Bay, confirms the recently defined position of the volcano−clastic succession in the stratigraphic scheme of King George Island. The new stratigraphic position and lithofacies development of the Red Hill succession strongly suggest its correlation with other Eocene formations containing fossil plants and coal seams that commonly occur on King George Island.
Go to article

This page uses 'cookies'. Learn more