Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 28
items per page: 25 50 75
Sort by:

Abstract

Osteocalcin is a major non-collagenous component of the bone extracellular matrix and is considered to be an indicative factor of osteoblast differentiation. In the present study, we detected osteocalcin expression in different antler areas and growth phases by immunohisto- chemistry. Osteocalcin was highly expressed in all areas during the mineralization period and in mesenchymal cell and chondrocyte areas during the rapid growth period. The nucleotide sequence of the osteocalcin gene in sika deer antler was determined. The open reading frame was 303 bp encoding a protein of 100 amino acids. The estimated molecular mass of osteocalcin was 10.38 kDa and the theoretical isoelectric point was 5.37. The osteocalcin gene with a 6× His-tag at the C-terminus was cloned into the pGEX-4T1 vector and expressed in Escherichia coli under optimal conditions. The recombinant soluble protein fused with GST was purified with Ni-NTA resin. The purified osteocalcin protein exhibited a significant increase in HA adhesion and promoted antler chondrocyte proliferation. Osteocalcin is an important factor in regulating the rapid growth and differentiation of deer antlers.
Go to article

Abstract

In the current study, twenty lambs, aged 4 months, half male and half female, were classified into four groups, with five in each group. The experimental three groups of lambs were given intravenous (IV), intramuscular (IM) and subcutaneous (SC) administrations of recombinant ovine interferon-τ (roIFN-τ). The fourth group (normal control) of lambs was given normal saline injections in the same way. After administrations, blood samples were collected from the tested animals at different time points post injection, and the serum titers of roIFN-τ were measured using cytopathic effect (CPE) inhibition bioassay. The results of calculating pharmacokinetic (PK) parameters using DAS software showed that the PK characteristics of roIFN-τ through IV injection conformed to the two-compartment open model, whose half-life of distribution phases (T1/2α) was 0.33±0.034 h and the elimination half-life(T1/2β) was 5.01±0.24 h. However, the PK features of IM injection and SC injection of roIFN-τ conformed to the one compartment open model, whose Tmax were 3.11±0.26 h and 4.83±0.43 h, respectively, together with an elimination half life(T1/2β) of 9.11±0.76 h and 7. 43±0.58 h, and an absorption half-life (T1/2k(a)) of 1.13±0.31 h and 1.85±0.40 h, respectively. The bioavailability of roIFN-τ after IM administration reaches 73.57%, which is greater than that of SC administration (53.43%). These results indicate that the drug administration effect can be preferably obtained following a single dose IM administration of the roIFN-τ aqueous preparation. This study will facilitate the clinical application of roIFN-τ as a potential antiviral agent in future work.
Go to article

Abstract

Senecavirus A (SVA) the only member of the Senecavirus genus within the Picornaviridae family, is an emerging pathogen causing swine idiopathic vesicular disease and epidemic transient neonatal losses. Here, SVA strain (CH-HNKZ-2017) was isolated from a swine farm exhibiting vesicular disease in Henan Province of Central China. A phylogenetic analysis based on complete genome sequence indicated that CH-HNKZ-2017 was closely related to US-15-40381IA, indica- ting that a new SVA isolate had emerged in China.
Go to article

Abstract

Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along the wall of the mold and flows upward in the center.
Go to article

Abstract

Based on the mould temperature measured by thermocouples during slab continuous casting, a difference of temperature thermograph is developed to detect slab cracks. In order to detect abnormal temperature region caused by longitudinal crack, the suspicious regions are extracted and divided by virtue of computer image processing algorithms, such as threshold segmentation, connected region judgement and boundary tracing. The abnormal regions are then determined and labeled with the eight connected component labeling algorithm. The boundary of abnormal region is also extracted to depict characteristics of longitudinal crack. Based on above researches, longitudinal crack with abnormal temperature region can be detected and is different from other abnormalities. Four samples of temperature drop are picked up to compare with longitudinal crack on the abnormal region formation, length, width, shape, et al. The results show that the abnormal region caused by longitudinal crack has a linear and vertical shape. The height of abnormal region is more than the width obviously. The ratio of height to width is usually larger than that of other temperature drop regions. This method provides a visual and easy way to detect longitudinal crack and other abnormities. Meanwhile it has a positive meaning to the intelligent and visual mould monitoring system of continuous casting.
Go to article

Abstract

The effects of Mg and Ca on sulfide modification of sulphur steel were studied to elucidate the difference between micromagnesium treatment and micro-calcium treatment for the inclusion of sulphur steel. The results show that the inclusions in the steel appeared with an oxide core of Al2O3 and MnS wrapped. After the addition of Mg, the core was changed to spinel, and the MnS coating was changed to Mn-Mg-S. After Ca was added, the core was changed to Ca-Al-O, and the MnS coating was changed to Mn-Ca-S. The Mg content was higher than Ca content in the sulfides of the steel. Therefore, Mg was more effective than Ca in terms of sulfide modification with the same content of Mg and Ca in steel, but the yielding rate of Mg was lower than that of Ca. The Mg content in the oxide core was higher than Mg of the coating of the inclusions in the steel treated with Mg or Mg-Ca. In contrast, the Ca content in the oxide core was lower than Ca of the coating of the inclusions in the steel treated with Ca or Mg-Ca. MnS formed and precipitated during the melt solidification process. The complex sulfide (Mg-Mn-S) was precipitated around MgO·Al2O3 in the Mg treated steel during the cooling process. CaS inclusion was precipitated on the CaO·Al2O3 inclusions in the liquid Ca-treated steel. Thus, CaS was formed first, whereas MnS was formed during the cooling process, followed by the formation of complex sulfide (CaS+MnS), which finally precipitated around CaO·Al2O3 in the Ca-treated steel.
Go to article

Abstract

In a series of recent papers we have shown how the continuum mechanics can be extended to nano-scale by supplementing the equations of elasticity for the bulk material with the generalised Young-Laplace equations of surface elasticity. This review paper begins with the generalised Young-Laplace equations. It then generalises the classical Eshelby formalism to nano-inhomogeneities; the Eshelby tensor now depends on the size of the inhomogeneity and the location of the material point in it. The generalized Eshelby formalism for nano-inhomogeneities is then used to calculate the strain fields in quantum dot (QD) structures. This is followed by generalisation of the micro-mechanical framework for determining the effective elastic properties of heterogeneous solids containing nano-inhomogeneities. It is shown that the elastic constants of nanochannel-array materials with a large surface area can be made to exceed those of the non-porous matrices through pore surface modification or coating. Finally, the scaling laws governing the properties of nano-structured materials are given.
Go to article

Abstract

Copper slag is a by-product obtained during smelting and refining of copper. Copper smelting slag typically contains about 1 wt.% copper and 40 wt.% iron depending upon the initial ore quality and the furnace type. Main components of copper slag are iron oxide and silica. These exist in copper slag mainly in the form of fayalite (2FeO ·SiO2). This study was intended to recover pig iron from the copper smelting slag by reduction smelting method. At the reaction temperature of below 1400°С the whole copper smelting slag was not smelted, and some agglomerated, showing a mass in a sponge form. The recovery behavior of pig iron from copper smelting slag increases with increasing smelting temperature and duration. The recovery rate of pig iron varied greatly depending on the reaction temperature.
Go to article

This page uses 'cookies'. Learn more