Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

A series of nanocomposite graphene/CoFe2O4 and graphene/NiFe2O4 hybrid materials was synthesized via facile, one-pot solvothermal route. The materials were obtained using two pressure methods: synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The use of a microwave reactor enabled to significantly shorten the synthesis time up to 15 min. All the syntheses were carried out in a solution of ethanol. The effect of processing conditions and composite composition on the physicochemical properties and electric conductivity was studied. The specific surface area, density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated. The results of studies of composites obtained in an autoclave and in a microwave reactor were compared.
Go to article

Abstract

Optical low-coherence interferometry is one of the most rapidly advancing measurement techniques. This technique is capable of performing non-contact and non-destructive measurement and can be used not only to measure several quantities, such as temperature, pressure, refractive index, but also for investigation of inner structure of a broad range of technical materials. We present theoretical description of low-coherence interferometry and discuss its unique properties. We describe an OCT system developed in our Department for investigation of the structure of technical materials. In order to provide a better insight into the structure of investigated objects, our system was enhanced to include polarization state analysis capability. Measurement results of highly scattering materials e.g. PLZT ceramics and polymer composites are presented. Moreover, we present measurement setups for temperature, displacement and refractive index measurement using low coherence interferometry. Finally, some advanced detection setups, providing unique benefits, such as noise reduction or extended measurement range, are discussed.
Go to article

Abstract

In this paper, we present a fibre-optic sensor for simultaneous measurement of refractive index and thickness of liquid layers.We designed an experimental low-coherence setup with two broadband light sources and an extrinsic fibre-optic Fabry–Pérot interferometer acting as the sensing head.We examined how the refractive index of a liquid film and its thickness affect spectrum at the output of a fibre-optic interferometer. We performed a series of experiments using two light sources and only one sensing head. The spectra were collected in ranges of 1220#4;1340 nm and 1500#4;1640 nm. The obtained results show that using two spectra recorded simultaneously for two wavelength ranges enables to determine thickness in a range of 50#4;500 #22;m, and refractive index of a liquid film in a range of 1:00#4;1:41 RIU using only one sensing head.
Go to article

This page uses 'cookies'. Learn more