Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The article presents the results of investigations performed on segregation of elements in the billets. The research were performed under standard industrial conditions, during high carbon steel production cycle. Probes (templates with the thickness of 20 mm) were taken from billets with square cross-section of 160 mm. Segregation of elements was determined based on the quantitative analysis of results performed by using spark spectrometry pursuant to PN-H-04045. Changes in concentrations of elements were analysed along two cross-sections. Element contents were performed at points distanced from each other by approx. 10 mm. The segregation of carbon, sulphur and phosphorus was determined for different billets.
Go to article

Abstract

The main purpose of the present work was to validate the numerical model for the pulse-step liquid steel alloying method using a physical simulator that enables the observation and recording of phenomena occurring during the continuous steel casting process. The facility under investigation was a single-nozzle tundish equipped with a dam. To physical trials the glass water model was made on a scale of 2:5. For the mathematical description of turbulence during liquid steel alloying process, the k-ε and k-ω models were employed in the simulations. Based on the computer simulations and physical trials carried out, alloy addition behaviour and mixing curves for different tundish alloy addition feeding positions were obtained. The change in the location of alloy addition feeding to the liquid steel had an effect on the process of alloy addition spread in the liquid steel bulk and on the mixing time.
Go to article

Abstract

The presented results of investigations are part of a larger study focused on the optimization of the flow and mixing of liquid steel in the industrial tundish of continuous casting machine. The numerical simulations were carried out concern the analysis of hydrodynamic conditions of liquid steel flow in a tundish operating in one of the national steelworks. Numerical simulations were performed using the commercial code ANSYS Fluent. The research concerns two different speeds of steel casting. In real conditions, these speeds are the most commonly used in the technological process when casting two different groups of steel. As a result of computational fluid dynamics (CFD) calculations, predicted spatial distributions of velocity and liquid steel turbulence fields and residence time distribution (RTD) curves were obtained. The volume fractions of different flows occurring in the tundish were also calculated. The results of the research allowed a detailed analysis of the influence of casting speed on the formation of hydrodynamic conditions prevailing in the reactor.
Go to article

This page uses 'cookies'. Learn more