Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.
Go to article

Abstract

In the work was presented the results of studies concerns on the destructive mechanisms for forging tools used in the wheel forging process as well the laboratory results obtained on a specially constructed test items for testing abrasive wear and thermal fatigue. The research results of the forging tools shown that the dominant destructive mechanisms are thermal fatigue occurring in the initial the exploitation stage and abrasive wear, which occurs later, and is intensified effects of thermo-mechanical fatigue and oxidation process. In order to better analysis of phenomena associated with destructive mechanisms, the authors built a special test stands allow for a more complete analysis of each of the mechanisms separately under laboratory conditions, which correspond to the industrial forging processes. A comprehensive analysis of the forging tools confirmed by laboratory tests, showed the interaction between the thermal fatigue and abrasive wear, combined with the oxidation process. The obtained results showed that the process of oxidation and thermal fatigue, very often occur together with the mechanism of abrasive wear, creating a synergy effect. This causing the acceleration, the most visible and easily measurable process of abrasive wear.
Go to article

Abstract

The article discusses the development of an approximation model of selected plastic and mechanical properties obtained from compression tests of model materials used in physical modeling. The use of physical modeling with the use of soft model materials such as a synthetic wax branch with various modifiers is a popular tool used as an alternative or verification of numerical modeling of bulk metal forming processes. In order to develop an algorithm to facilitate the choice of material model to simulate the behavior of real-metallic materials used in industrial production processes the induction of decision trees was used. First of all, the Statistica program was used for data mining, which made it possible to determine / find the relationship between the percentage of particular constituents of the model material (base material and modifiers) and yield strength, critical and maximum strain, and provide the opportunity to indicate the most important variables determining the shape of the stress – strain curve. Next, using the induction of decision trees, an approximation model was developed, which allowed to create an algorithm facilitating the selection of individual modifying components. The last stage of the research was verification of the correctness of the developed algorithm. The obtained research results indicate the possibility of using decision tree induction to approximate selected properties of modeling materials simulating the behavior of real materials, thus eliminating the need for costly and time-consuming experiments carried out on metallic material.
Go to article

Abstract

The study presents a durability analysis of dies used in the first operation of producing a valve-type forging from high nickel steel assigned to be applied in motor truck engines. The analyzed process of producing exhaust valves is realized in the forward extrusion technology and next through forging in closed dies. It is difficult to master, mainly due to the increased adhesion of the charge material (high nickel steel) to the tool’s substrate. The mean durability of tools made of tool steel W360, subjected to thermal treatment and nitriding, equals about 1000 forgings. In order to perform a thorough analysis, complex investigations were carried out, which included: a macroscopic analysis combined with laser scanning, numerical modelling by FEM, microstructural tests on a scanning electron microscopy and light microscopy (metallographic), as well as hardness tests. The preliminary results showed the presence of traces of abrasive wear, fatigue cracks as well as traces of adhesive wear and plastic deformation on the surface of the dies. Also, the effect of the forging material being stuck to the tool surface was observed, caused by the excessive friction in the forging’s contact with the tool and the presence of intermetallic phases in the nickel-chromium steel. The obtained results demonstrated numerous tool cracks, excessive friction, especially in the area of sectional reduction, as well as sticking of the forging material, which, with insufficient control of the tribological conditions, may be the cause of premature wear of the dies.
Go to article

This page uses 'cookies'. Learn more