Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 69
items per page: 25 50 75
Sort by:

Abstract

Fatty acids are very important biological substances due to their metabolic, structural and signal- ing functions. Omega-3 has different beneficial, harmful and neutral effects on adipokines. Adi- pokines have autocrine, paracrine and endocrine effects on metabolism. In the study 54 German Fawn x Hair crossbred goats were synchronized using intravaginal sponges. During the first pe- riod (mating-75 days), all animals were fed a diet supplemented with protected fat and during the second period of pregnancy (76 days-kidding), one of the groups was fed a diet supplemented with fish oil and other was fed a diet supplemented with protected fat. Serum leptin, ghrelin, adi- ponektin and omentin levels were measured by ELISA system. Distributed fed (roughage and concentrate) were sampled and dry matter, crude protein, fat, and ash were determined by AOAC (1988) analysis methods. The Acid Detergent Fiber (ADF) and Neutral Detergent Fiber (NDF) analysis were conducted using heat stable α-amylase and sodium sulphite. Fat source (fish oil or protected fat) affected feed consumption and the highest feed consumption was found in the group fed with protected oil first half of the pregnancy and with fish oil in the second half of the pregnancy and in the fish oil group during the pregnancy. It was determined that the use of fish oil during pregnancy did not affect ghrelin, leptin and omentin concentrations in serum. Adipokine levels of fish oil fed animals during any period of pregnancy were found to be high and it was also found that serum adiponectin levels in goats fed with diet containing fish oil in the first half of pregnancy and protected fat in the second half were statistically significantly high in adipokines.
Go to article

Abstract

The presence of lipopolysaccharide (LPS) in blood induces an inflammatory response which leads to multiple organ dysfunction and numerous metabolic disorders. Uncontrolled, improper or late intervention may lead to tissue hypoxia, anaerobic glycolysis and a disturbance in the acid -base balance. The effects of LPS-induced toxemia on biological and immunological markers were well studied. However, parameters such as base excess, ions, and acid-base balance were not fully investigated. Therefore, the objective of this study was to examine these blood parameters collectively in LPS-induced inflammatory toxemia in rat’s model. After induction of toxemia by injecting LPS at a rate of 5 mg/kg body weight intravenously, blood was collected from the tail vein of twenty rats and immediately analyzed. After 24 hours, the animals were sacrificed and the blood was collected from the caudal vena cava. The results revealed that the levels of pH, bicarbonate, partial pressure of oxygen, oxygen saturation, Alveolar oxygen, hemoglobin, hematocrit, magnesium (Mg2+), and calcium (Ca2+) were significantly decreased. On the other side, the levels of Base excess blood, Base excess extracellular fluid, partial pressure of carbon dioxide, lactate, Ca2+/Mg2+, potassium, and chloride were significantly increased compared to those found pre toxemia induction. However, sodium level showed no significant change. In conclusion, Acute LPS-toxemia model disturbs acid-base balance, blood gases, and ions. These parameters can be used to monitor human and animal toxemic inflammatory response induced by bacterial LPS conditions to assist in the management of the diagnosed cases.
Go to article

Abstract

The welfare and healthy growth of poultry under intensive feeding conditions are closely related to their living environment. In spring, the air quality considerably decreases due to reduced ventilation and aeration in cage systems, which influences the meat quality and health of broilers during normal growth stages. In this study, we analyzed the airborne bacterial communities in PM2.5 and PM10 in cage broiler houses at different broiler growth stages under intensive rearing conditions based on the high-throughput 16S rDNA sequencing technique. Our results revealed that PM2.5, PM10 and airborne microbes gradually increased during the broiler growth cycle in poultry houses. Some potential or opportunistic pathogens, including Acinetobacter, Pseudomonas, Enterococcus, Microbacterium, etc., were found in the broiler houses at different growth stages. Our study evaluated variations in the microbial communities in PM2.5 and PM10 and potential opportunistic pathogens during the growth cycle of broilers in poultry houses in the spring. Our findings may provide a basis for developing technologies for air quality control in caged poultry houses.
Go to article

Abstract

The Intrauterine fetal development process is complicated and affected by many regulating factors such as maternal nutritional status, transcription factors and adipokines. Adipokines are kinds of active substances secreted by adipose tissue, including more than 50 kinds of molecules. To explore the correlation between calf birth weights and adipokines including adiponectin, leptin, visfatin, and IGF-1 in cows venous and venous cord blood. Fifty-four healthy multiparous Chinese Holstein cows were used; in which, cows with a calf weight less than 40 kg were included in group A (n=9); those with a calf weight between 40 kg~45 kg were included in group B (n=25) and ≥45 kg were included in group C (n=20), venous blood and cord venous blood was collected. An ELISA kit was used to evaluate the concentration of adiponectin, leptin, visfatin, and IGF-1, correlations between index-index and index-calf birth weight were analysed. In both cows venous and cord venous blood, adiponectin, leptin, visfatin, and IGF-1 levels were significantly correlated with each other (p<0.01), and levels of these adipokines in venous blood were significantly higher than cord venous blood (p<0.01). Adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were positively correlated with calf birth weights, and significantly correlated with calf birth weights respectively (p<0.01). Our study showed that adiponectin, leptin, and IGF-1 were found in venous blood and cord venous blood, and adiponectin, leptin, and IGF-1 in venous and cord venous blood potentially inter-regulated each other; adiponectin, leptin, and IGF-1 in venous blood were not significantly correlated with calf birth weights, while adiponectin, leptin, visfatin, and IGF-1 in venous cord blood were significantly correlated with calf birth weights, respectively.
Go to article

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.
Go to article

Abstract

Based on the theory of heat transfer, the influence of expansion joints on the temperature and stress distribution of ladle lining is discussed. In view of the current expansion joint, the mathematical model of heat transfer and the three dimensional finite element model of ladle lining brick are established. By analyzing the temperature and stress distribution of ladle lining brick when the expansion joints are in different sizes, the thermal mechanical stress caused by the severe temperature difference can be reduced by the suitable expansion joint of the lining brick during the ladle baking and working process. The analysis results showed that the thermal mechanical stress which is caused by thermal expansion can be released through the 2 mm expansion joint, which is set in the building process. So we can effectively reduce the thermal mechanical stress of the ladle lining, and there is no risk of steel leakage, thus the service life of ladle can be effectively prolonged.
Go to article

Abstract

Group of steel balls with different chemical composition, diameters and nitriding treatment parameters were investigated with using magnetic resonance and magnetization methods. Emerging nitrided regions consists of diffusion and surface layer of iron nitrides. The thickness of the individual layers depends on the type of steel and process parameters. Resonance signal shape and position were successfully described in the ferromagnetic resonance regime expected for dense iron magnetic system. Influence of the sample size, thermal treatment and carbon content on the absorption signal has been analyzed. Significant magnetic anisotropy has been revealed, as well as non-usual increasing of the magnetization as a function of temperature. It suggests, that overall antiferromagnetic ordering, destroyed by thermal movement, lead to increasing of the ferromagnetic region.
Go to article

This page uses 'cookies'. Learn more