Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

This paper presents a mechanical positioning system for a measuring microphone designed for acoustic studies in anechoic and reverberation chambers at the Department of Mechanics and Vibroacoustics, AGH. The results are discussed in the context of mechanical positioning and its impact on the outcome of the execution of individual measurement procedures. Moreover, areas for research were identified and solution concepts shown for further development of the automation of acoustic measurements in different research rooms in order to reduce the human involvement in them.
Go to article

Abstract

It is convenient to have a device and a method of generating single cut-on modes in cylindrical hard-walled waveguides or at least in laboratory models of such systems. This allows to examine, among other things, properties of various active and/or passive elements inserted in a cylindrical duct by testing them in conditions when the incident (input) wave comprises only one cut-on mode and determining the reflection and transmission coefficients for single selected incident modes. As it has been already demonstrated by the present authors, it is possible to generate single cut-on modes in a circular duct using a small (although increasing with mode order) number of acoustic monopoles arranged properly on a duct cross-section and driven with appropriate acoustic volume amplitudes and phases. Laboratory models of such sources are proposed in this paper and results of tests verifying their directional properties are presented. The other technical issue relating to practical utilization of the proposed method is the possible error introduced by the apparatus used for scanning the acoustic field inside the duct model. It is shown that insertion of the measuring probe changes the total energy radiated into the free space only by a fraction of a decibel.
Go to article

Abstract

The paper presents the new solution to a road acoustic screen consisting of elements which are highly diffusing and simultaneously resistant to weathering, but also characterised by a sound absorption. There is described the comprehensive research of such the road acoustic screen with absorbing and diffusing surface. The study includes screen’s resistance to wind load and snow removal, impact tests and mea- surements of some acoustic parameters
Go to article

This page uses 'cookies'. Learn more