Search results

Filters

  • Journals

Search results

Number of results: 5
items per page: 25 50 75
Sort by:

Abstract

The research aim was to determine the long-term impact of the mine waste stored at the coal waste dump Hałda Ruda on the content of heavy metals in the bottom sediments of the Bytomka River. It is a watercourse flowing along this coal waste dump and has been under its influence for over fifty years. The research also attempted to determine the seasonality of changes (2 years) and mobility of selected elements. The article presents total contents of Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the bottom sediments collected from the Bytomka River. It also focuses on the distribution of these elements in particular geochemical fractions determined with the Tessier's sequential chemical extraction procedure. Total element contents were determined with an EDPXRF (Energy Dispersive X-ray Fluorescence) technique. The extractants of particular Tessier's fractions were determined quantitatively with an ICP-MS (Inductively Coupled Plasma Mass Spectrometry) spectrometer. The research results show that the stored waste significantly influences the contents of heavy metals in the Bytomka River bottom sediments. The lowest concentration of heavy metals was observed at the B1 spot (above the dump), while the highest one was measured at the B3 spot (below the dump). Sequential chemical extraction of the bottom sediments indicates that the Zn content in the ion-exchange and carbonate fractions diminished within a year. Nevertheless, Zn bound to Fe and Mn oxides acted in the opposite way. Mn, Zn and Pb are the most dangerous elements from the viewpoint of environmental hazards, as their total concentrations were high. Moreover, their high contents were observed in the most mobile (ion-exchange and carbonate) fractions. Extremely toxic Cd was bound to the oxide fraction to the largest extent. Cu was mainly bound to the organic fraction while environmentally hazardous Cr was bound to the residual fraction.
Go to article

Abstract

Refinement is one of the most energy consuming technological process, aimed at obtaining mineral raw materials of the proper grain size. Cast structural elements such as jaws or hammers in crushing machines operate under conditions of an intensive wear. The data indicate that 80 % of failures of machines and devices is caused by wearing of rubbing surfaces. This problem became the subject of several scientific and industrial investigations carried out in the whole world in order to produce materials ultra- wear resistant. Methods allowing to obtain wear resistant composite castings are discussed in the hereby paper. Within the performed research microstructures of the produced composite zones were presented and the comparative analysis with regard to mechanical and functional properties of local composite reinforcements in relation to the commercial alloys of increased wear resistance was performed. The results show almost twenty five times increase in wear resistance compared to manganese cast steel containing 18 % Mn.
Go to article

Abstract

In order to increase wear resistance cast steel casting the TiC-Fe-Cr type composite zones were fabricated. These zones were obtained by means of in situ synthesis of substrates of the reaction TiC with a moderator of a chemical composition of white cast iron with nickel of the Ni-Hard type 4. The synthesis was carried out directly in the mould cavity. The moderator was applied to control the reactive infiltration occurring during the TiC synthesis. The microstructure of composite zones was investigated by electron scanning microscopy, using the backscattered electron mode. The structure of composite zones was verified by the X-ray diffraction method. The hardness of composite zones, cast steel base alloy and the reference samples such as white chromium cast iron with 14 % Cr and 20 % Cr, manganese cast steel 18 % Mn was measured by Vickers test. The wear resistance of the composite zone and the reference samples examined by ballon-disc wear test. Dimensionally stable composite zones were obtained containing submicron sizes TiC particles uniformly distributed in the matrix. The macro and microstructure of the composite zone ensured three times hardness increase in comparison to the cast steel base alloy and one and a half times increase in comparison to the white chromium cast iron 20 % Cr. Finally ball-on-disc wear rate of the composite zone was five times lower than chromium white cast iron containing 20 % Cr.
Go to article

This page uses 'cookies'. Learn more