Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 µm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.
Go to article

Abstract

Electron beam melting(EBM) is a useful technique to obtain high-purity metal ingots. It is also used for melting refractory metals such as tantalum, which require melting techniques employing a high-energy heat source. Drawing is a method which is used to convert the ingot into a wire shape. The required thickness of the wire is achieved by drawing the ingot from a drawing die with a hole of similar size. This process is used to achieve high purity tantalum springs, which are an essential component of lithography lamp in semiconductor manufacturing process. Moreover, high-purity tantalum is used in other applications such as sputtering targets for semiconductors. Studies related to recycling of tantalum from these components have not been carried out until now. The recycling of tantalum is vital for environmental and economic reasons. In order to obtain high-purity tantalum ingot, in this study impurities contained in the scrap were removed by electron beam melting after pre-treatment using aqua regia. The purity of the ingot was then analyzed to be more than 4N5 (99.995%). Subsequently, drawing was performed using the rod melted by electron beam melting. Owing to continuous drawing, the diameter of the tantalum wire decreased to 0.5 mm from 9 mm. The hardness and oxygen concentration of the tantalum ingot were 149 Hv and less than 300 ppm, respectively, whereas the hardness of the tantalum wire was 232.12 Hv. In conclusion, 4N5 grade tantalum wire was successfully fabricated from tantalum scrap by EBM and drawing techniques. Furthermore, procedure to successfully recycle Tantalum from scraps was established.
Go to article

This page uses 'cookies'. Learn more