Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 7
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Gaseous hydrogen may be generated in a nuclear reactor system as an effect of the core overheating. This creates a risk of its uncontrolled combustion which may have a destructive consequences, as it could be observed during the Fukushima nuclear power plant accident. Favorable conditions for hydrogen production occur during heavy loss-of-coolant accidents. The author used an own computer code, called HEPCAL, of the lumped parameter type to realize a set of simulations of a large scale loss-of-coolant accidents scenarios within containment of second generation pressurized water reactor. Some simulations resulted in high pressure peaks, seemed to be irrational. A more detailed analysis and comparison with Three Mile Island and Fukushima accidents consequences allowed for withdrawing interesting conclusions.
Przejdź do artykułu

Abstrakt

This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances. Słowa kluczowe
Przejdź do artykułu

Abstrakt

The work deals with experimental and numerical thermodynamic analyses of cross-flow finned tube heat exchangers of the gas-liquid type. The aim of the work is to determine an impact of the gas non-uniform inlet on the heat exchangers performance. The measurements have been carried out on a special testing rig and own numerical code has been used for numerical simulations. Analysis of the experimental and numerical results has shown that the range of the non-uniform air inlet to the considered heat exchangers may be significant and it can significantly affect the heat exchanger efficiency.
Przejdź do artykułu

Abstrakt

A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.
Przejdź do artykułu

Abstrakt

A lumped parameter type code, called HEPCAL, has been worked out in the Institute of Thermal Technology of the Silesian University of Technology for simulations of a pressurized water reactor containment transient response to a loss-of-coolant accident. The HEPCAL code has been already verified and validated against available experimental data, which in fact have been taken from separate effect tests mainly. This work is devoted to validation of the latest version of the HEPCAL code against experimental data from more complex tests. These experiments have been performed on three different test rigs (called TOSQAN,MISTRA and ThAI) and a part of them became the basis of the International Standard Problem No. 47 (ISP-47) dedicated to containment thermal-hydraulics. Selected experiments realized within the framework of the ISP-47 project have been simulated using the HEPCAL-AD code. The obtained results allowed for drawing of some important conclusions concerning heat and mass transfer models (especially steam condensation), two-phase flow model and buoyancy effects.
Przejdź do artykułu

Abstrakt

Passive autocatalytic recombiners (PAR) is the only used method for hydrogen removal from the containment buildings in modern nuclear reactors. Numerical models of such devices, based on the CFD approach, are the subject of this paper. The models may be coupled with two types of computer codes: the lumped parameter codes, and the computational fluid dynamics codes. This work deals with 2D numerical model of PAR and its validation. Gaseous hydrogen may be generated in water nuclear reactor systems in a course of a severe accident with core overheating. Therefore, a risk of its uncontrolled combustion appears which may be destructive to the containment structure.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji