Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Several authors have proposed indices to synthesize the acoustics of a space, especially of concert halls. Meanwhile, a few studies have focused on the acoustics of worship spaces. The peculiarities of these last ones have shown distinctive characteristics. The increasing interest for the acoustics of worship spaces justifies the formulation of indices to synthesize the results of acoustic studies in these buildings too. This paper proposes a double synthetic index to evaluate the acoustics of a church. The index is obtained combining the average values of seven parameters generally considered in studies of architectural acoustics. The differences between requirements for music and speech in churches suggest to consider different optimal values of the selected parameters for different kinds of sound. A double synthetic index has been defined to synthesize the acoustical properties related to the music and to the speech separately. The validity of this double index is then assessed, comparing its values with subjective preferences captured through listening tests. The index, which is proposed and validated in this paper, aims to be an instrument to show synthetically the acoustical characteristics of a church to people with low knowledge in acoustics.
Przejdź do artykułu

Abstrakt

This paper discusses the concept of the reverberation radius, also known as critical distance, in rooms with non-uniformly distributed sound absorption. The reverberation radius is the distance from a sound source at which the direct sound level equals the reflected sound level. The currently used formulas to calculate the reverberation radius have been derived by the classic theories of Sabine or Eyring. However, these theories are only valid in perfectly diffused sound fields; thus, only when the energy density is constant throughout a room. Nevertheless, the generally used formulas for the reverberation radius have been used in any circumstance. Starting from theories for determining the reverberation time in non- diffuse sound fields, this paper firstly proposes a new formula to calculate the reverberation radius in rooms with non-uniformly distributed sound absorption. Then, a comparison between the classic formulas and the new one is performed in some rectangular rooms with non-uniformly distributed sound absorption. Finally, this paper introduces a new interpretation of the reverberation radius in non-diffuse sound fields. According to this interpretation, the time corresponding to the sound to travel a reverberation radius should be assumed as the lower limit of integration of the diffuse sound energy
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji