Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 1
items per page: 25 50 75
Sort by:

Abstract

Mining-induced seismicity, particularly high-energy seismic events, is a major factor giving rise to dynamic phenomena within the rock strata. Rockbursts and stress relief events produce the most serious consequences in underground mines, are most difficult to predict and tend to interact with other mining hazards, thus making control measures difficult to implement. In the context of steadily increasing mining depth within copper mines in the Legnica-Głogów Copper Belt Area (Poland) alongside the gradually decreasing effective mining thickness, a study of the causes and specificity of mining-induced seismicity in specific geological and mining settings may improve the effectiveness of the prevention and control measures taken to limit the negative impacts of rockbursts in underground mine workings, thus ensuring safe working conditions for miners. This study investigates the presumed relationship between the mined ore deposit thickness and fundamental parameters of mining-induced seismicity, with the main focus on the actual locations of their epicenters with respect to the working face in commonly used room-and-pillar systems. Data recalled in this study was supplied by the O/ZG Rudna geophysics station. Based on information about the actual ore deposit thickness in particular sections of the mines (Rudna Główna, Rudna Północna, Rudna Zachodnia) and recent reports on seismic activity in this area, three panels were selected for further studies (each in different mine region), where the ore deposit thickness was varied (panel G-7/5 – Rudna Główna, panel XX/1 – Rudna Północna, panel XIX/1 – Rudna Zachodnia). Data from seismic activity reports in those regions was used for energetic and quantitative analysis of seismic events in the context of the epicenter location with respect to the selected mining system components: undisturbed strata, working face and abandoned excavations. In consideration of the available rockburst control methods and preventive measures, all events (above 1 × 103 J) registered in the database were analysed to infer about the global rockburst hazard level in the panel and phenomena induced (provoked) by blasting were considered in order to evaluate the effectiveness of the implemented control measures.
Go to article

This page uses 'cookies'. Learn more