Details

Title

Flexure of thick plates resting on elastic foundation using two-variable refined plate theory

Journal title

Archive of Mechanical Engineering

Yearbook

2015

Volume

vol. 62

Numer

No 2

Authors

Keywords

Navier solution ; simply supported plate ; two-variable refined plate theory ; Winkler elastic foundation

Divisions of PAS

Nauki Techniczne

Coverage

181-203

Publisher

Polish Academy of Sciences, Committee on Machine Building

Date

14.08.2015

Type

Artykuły / Articles

Identifier

ISSN 0004-0738, e-ISSN 2300-1895

References

Korhan (2013), A parametric study for thick plates resting on elastic foundation with variable soil depth, Appl Mech, 83, 549. ; Venstel (2001), Thin Plates and Shells - Theory Analysis and Applications New York, Marcel. ; Liew (1996), Differential quadrature method for Mindlin plates onWinkler foundations, Int J Mech Sci, 38, 405, doi.org/10.1016/0020-7403(95)00062-3 ; Thai (2012), Levy - type solution for free vibration analysis of orthotropic plates based on two variablerefined plate theory Mathematical Modelling, Applied, 36, 3870. ; Thai (2010), Free vibration of laminated composite plates using two variable refined plate theory of Mechanical Sciences, International Journal, 52, 626. ; Reddy (1985), Stability and vibration of isotropic orthotropic and laminated plates according to a higher - order shear deformation theory, Sound Vib, 98, 157, doi.org/10.1016/0022-460X(85)90383-9 ; Kim (2009), Buckling analysis of plates using the two variable refined plate theory, Thin Wall Struct, 47, 455, doi.org/10.1016/j.tws.2008.08.002 ; Reddy (1984), A simple higher - order theory for laminated composite plates, Trans Appl Mech, 51, 745, doi.org/10.1115/1.3167719 ; Srinivas (1970), Joga Bending , vibration and buckling of simply supported thick orthotropic rectangular plate and laminates, Int J Solids Struct, 6, 1463, doi.org/10.1016/0020-7683(70)90076-4 ; Mindlin (1951), Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, Trans Appl Mech, 18, 31. ; Voyiadjis (1986), Thick rectangular plates on an elastic foundation, Eng Mech, 112, 1218, doi.org/10.1061/(ASCE)0733-9399(1986)112:11(1218) ; Lo (1977), A high - order theory of plate deformation Part Homogeneous plates, Appl Mech, 44, 663, doi.org/10.1115/1.3424154 ; Shimpi (2006), Free vibrations of plate using two variable refined plate theory, Sound Vib, 4, 296. ; Reissner (1945), The effect of transverse shear deformation on the bending of elastic plates, Trans Appl Mech, 12, 69. ; Shimpi (2002), Refined plate theory and its variants, AIAA J, 40, 137, doi.org/10.2514/2.1622 ; Shimpi (2006), A two variable refined plate theory for orthotropic plate analysis, Int J Solids Struct, 43, 6783, doi.org/10.1016/j.ijsolstr.2006.02.007 ; Ghugal (2010), A Static Flexure of Thick Isotropic Plates Using Trigonometric Shear Deformation Theory of Solid Mechanics, Journal, 2, 79. ; Hanna (1994), A higher order shear deformation theory for the vibration of thick plates, Sound Vib, 170, 545, doi.org/10.1006/jsvi.1994.1083 ; Kirchhoff (1859), Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, Reine Angew Math, 51. ; Kim (2009), A two variable refined plate theory for laminated composite plates, Compos Struct, 89, 197, doi.org/10.1016/j.compstruct.2008.07.017 ; Whitney (1973), A higher order theory for extensional motion of laminated composites of Sound and Vibration, Journal, 30, 85. ; Kant (1982), Numerical analysis of thick plates, Comput Methods Appl Mech Eng, 31, 1, doi.org/10.1016/0045-7825(82)90043-3 ; Bhimaraddi (1984), A higher order theory for free vibration of orthotropic homogeneous and laminated rectangular plates, Appl Mech, 51, 195, doi.org/10.1115/1.3167569

DOI

10.1515/meceng-2015-0011

×