Details

Title

Modelling of pollutants concentrations from the biomass combustion process

Journal title

Chemical and Process Engineering

Yearbook

2011

Numer

No 4 December

Authors

Keywords

biomass combustion process ; numerical modelling ; air pollutants

Divisions of PAS

Nauki Techniczne

Coverage

423-433

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

ISSN 0208-6425

References

Adamczuk M. (2010), The use of computer programs for the numerical modelling of combustion process and gas dynamics in heating furnaces, Archivum Combustionis, 30, 4, 451. ; Adamczuk M. (2009), Applied of numerical methods to environmental protection, Archiwum Spalania, 9, 13. ; Barneto A. (2010), Kinetic study on the thermal degradation of a biomass and its compost: Composting effect on hydrogen production, Fuel, 89, 462, doi.org/10.1016/j.fuel.2009.09.024 ; Burcat A., 2011. Thermodynamic database BURCAT.THR. Retrieved January 2, 2012 from <a target="_blank" href='http://ftp.technion.ac.il/pub/supported/aetdd/thermodynamics'>ftp.technion.ac.il/pub/supported/aetdd/thermodynamics</a> ; Dupont C. (2009), Biomass pyrolysis: Kinetic modelling and experimental validation under high temperature and flash heating rate conditions, J. Anal. Appl. Pyrolysis, 85, 260, doi.org/10.1016/j.jaap.2008.11.034 ; Liu H. (2002), Modelling of NO and N<sub>2</sub>O emission from biomass-fired circulating fluidized bed combustors, Fuel, 81, 271, doi.org/10.1016/S0016-2361(01)00170-3 ; Ma L. (2007), Modelling the combustion of of pulverized biomass in an industrial combustion test furnace, Fuel, 86, 1956, doi.org/10.1016/j.fuel.2006.12.019 ; Miller J. (1989), Mechanism and modelling of nitroagen chemistry in combustion, Prog. Energy Combust. Sci, 15, 287, doi.org/10.1016/0360-1285(89)90017-8 ; Nimmo W. (2010), The effect of O<sub>2</sub>enrichment on NO<sub>x</sub>formation in biomass co-fired pulverised coal combustion, Fuel, 89, 2945, doi.org/10.1016/j.fuel.2009.12.004 ; Pisupati S. (2008), Numerical modelling of NO<sub>x</sub>reduction using pyrolysis products from biomass-based materials, Biomass Bioenergy, 32, 146, doi.org/10.1016/j.biombioe.2007.07.010 ; Venturini P. (2010), Modelling of mutiphase combustion and deposit formation in biomass-fed furnace, Energy, 35, 3008, doi.org/10.1016/j.energy.2010.03.038 ; Wei X. (2005), Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation, Fuel, 84, 841, doi.org/10.1016/j.fuel.2004.11.022 ; Westbrook C. (1981), Chemical kinetics and modelling of combustion process, Eighteenth International Symposium on Combustion, 18, 1, 749, doi.org/10.1016/S0082-0784(81)80079-3 ; Wilk M. (2010), Ozone effects on the emission of pollutants coming from natural gas combustion, Polish J. Environ. Stud, 19, 1331. ; Wilk M. (2010), The influence of oxygen addition into air combustion on natural gas combustion process, Rynek Energii, 5, 32. ; Wilk R. (2009), Emissions of CO, SO<sub>2</sub>NO<sub>x</sub>and ash during co-combustion of biomass in a 25 kW boiler, Chem. Process Eng, 30, 279. ; Williams A. (2001), Combustion of pulverised coal and biomass, Prog. Energy Combust. Sci, 27, 587, doi.org/10.1016/S0360-1285(01)00004-1

DOI

10.2478/v10176-011-0034-2

×