Details

Title

Application of Xfem with Shifted-Basis Approximation to Computation of Stress Intensity Factors

Journal title

Archive of Mechanical Engineering

Yearbook

2011

Volume

vol. 58

Numer

No 4

Authors

Keywords

stress intensity factor ; extended finite element method ; XFEM ; shifted basis approximation

Divisions of PAS

Nauki Techniczne

Coverage

467-483

Publisher

Polish Academy of Sciences, Committee on Machine Building

Date

2011

Type

Artykuły / Articles

Identifier

ISSN 0004-0738, e-ISSN 2300-1895

References

Anderson T. (2005), Fracture Mechanics, Fundamentals and Application. ; Belytschko T. (1999), Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering, 45, 601, doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S ; Chessa J. (2003), On the construction of blending elements for local partition of unity enriched finite elements, International Journal for Numerical Methods in Engineering, 57, 1015, doi.org/10.1002/nme.777 ; Fries T. (2008), A corrected xfem approximation without problems in blending elements, International Journal for Numerical Methods in Engineering, 75, 503, doi.org/10.1002/nme.2259 ; Laborde P. (2005), High-order extended finite element method for cracked domains, International Journal for Numerical Methods in Engineering, 64, 3, 354, doi.org/10.1002/nme.1370 ; Möes N. (1999), A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, 46, 131, doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J ; Rice J. (1968), A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35, 379, doi.org/10.1115/1.3601206 ; Tarancòn J. (2009), Enhanced blending elements for XFEM applied to LEFM, International Journal for Numerical Methods in Engineering, 77, 126, doi.org/10.1002/nme.2402 ; Ventura G. (2003), Vector level sets for description of propagating cracks in finite elements, International Journal for Numerical Methods in Engineering, 58, 1571, doi.org/10.1002/nme.829 ; Yau J. (1980), A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity, Journal of Applied Mechanics, 47, 335, doi.org/10.1115/1.3153665 ; Zi G. (2003), New crack-tip elements for XFEM and applications to cohesive cracks, International Journal for Numerical Methods in Engineering, 57, 2221, doi.org/10.1002/nme.849

DOI

10.2478/v10180-011-0028-0

×