### Details

#### Title

Robust stability of positive discrete-time linear systems of fractional order#### Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences#### Yearbook

2010#### Volume

58#### Numer

No 4#### Authors

#### Divisions of PAS

Nauki Techniczne#### Coverage

567-572#### Date

2010#### References

Farina L. (2000), Positive Linear Systems; Theory and Applications. ; Kaczorek T. (2002), Positive 1D and 2D Systems. ; Das S. (2008), Functional Fractional Calculus for System Identification and Controls. ; Kilbas A. (2006), Theory and Applications of Fractional Differential Equations. ; Ostalczyk P. (2008), Epitome of the Fractional Calculus, Theory and Its Applications in Automatics. ; Podlubny I. (1999), Fractional Differential Equations. ; Sabatier J. (2007), Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering. ; Kaczorek T. (2007), Reachability and controllability to zero of positive fractional discrete-time systems, Machine Intelligence and Robotics Control, 6, 4, 139. ; Kaczorek T. (2008), Fractional positive continuous-time linear systems and their reachability, Int. J. Appl. Math. Comput. Sci, 18, 2, 223, doi.org/10.2478/v10006-008-0020-0 ; Ahn H.-S. (2008), Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica, 44, 2985, doi.org/10.1016/j.automatica.2008.07.003 ; Bonnet C. (2007), Stabilization of some fractional delay systems of neutral type, Automatica, 43, 2047, doi.org/10.1016/j.automatica.2007.03.017 ; Busłowicz M. (2008), Recent Advances in Control and Automation, 83. ; Busłowicz M. (2008), Stability of linear continuous-time fractional order systems with delays of the retarded type, Bull. Pol. Ac.: Tech, 56, 4, 319. ; Busłowicz M. (2008), Robust stability of convex combination of two fractional degree characteristic polynomials, Acta Mechanica et Automatica, 2, 2, 5. ; Busłowicz M. (2009), Stability analysis of linear continuous-time fractional systems of commensurate order, J. Automation, Mobile Robotics and Intelligent Systems, 3, 1, 16. ; Chen Y.-Q. (2006), Robust stability check of fractional order linear time invariant systems with interval uncertainties, Signal Processing, 86, 2611, doi.org/10.1016/j.sigpro.2006.02.011 ; Dzieliński A. (2006), Stability of discrete fractional state-space systems, null, 1, 519. ; Gałkowski K. (2005), Fractional polynomials and nD systems, null, 1. ; Hwang C. (2006), A numerical method for stability testing of fractional delay systems, Automatica, 42, 825, doi.org/10.1016/j.automatica.2006.01.008 ; I. Petras, "Stability of fractional-order systems with rational orders", in <i>Report arXiv:0811.4102v2</i> [math. DS], Technical University of Kosice, Kosice, 2008. ; Radwan A. (2007), On the stability of linear systems with fractionalorder elements, Chaos, Solitons & Fractals, 1, doi.org/10.1016/j.chaos.2007.10.033 ; Tavazoei M. (2009), A note on the stability of fractional order systems, Mathematics and Computers in Simulation, 79, 1566, doi.org/10.1016/j.matcom.2008.07.003 ; Tan N. (2009), Robust stability analysis of fractional order interval polynomials, ISA Transactions, 48, 166, doi.org/10.1016/j.isatra.2009.01.002 ; Kaczorek T. (2008), Practical stability of positive fractional discretetime systems, Bull. Pol. Ac.: Tech, 56, 4, 313. ; Busłowicz M. (2008), Practical robust stability of positive fractional scalar discrete-time systems, Scientific Exercises of Silesian University of Technology: Automatics, 151, 25. ; Busłowicz M. (2009), Simple conditions for practical stability of positive fractional discrete-time linear systems, Int. J. Appl. Math. Comput. Sci, 19, 2, 263, doi.org/10.2478/v10006-009-0022-6 ; Kaczorek T. (2009), Stabilization of fractional discrete-time linear systems using state-feedback, null, 27, 1. ; Bhattacharyya S. (1995), Robust Control: The Parametric Approach, doi.org/10.1016/B978-0-08-042230-5.50016-5#### DOI

10.2478/v10175-010-0057-8