Applied sciences

Archives of Civil Engineering

Content

Archives of Civil Engineering | 2013 | No 3 |

Download PDF Download RIS Download Bibtex

Abstract

This study aims to evaluate the efficiency of strengthening reinforced concrete beams using some valid strengthening materials and techniques. Using concrete layer, reinforced concrete layer and steel plates are investigated in this research. Experiments on strengthening beam samples of dimensions 100x150x1100 mm are performed. Samples are divided in to three groups. Group “A” is strengthened using 2 cm thickness concrete layer only (two types). Group “B” is strengthened using 2 cm thickness concrete layer reinforced with meshes (steel and plastic). Group “C” is strengthened using steel plates. The initial cracking load, ultimate load and crack pattern of tested beams are illustrated. The experimental results show that for group A and B, the ultimate strength, stiffness, ductility, and failure mode of RC beams, with the same thickness strengthening layer applied, will be affected by the mesh type, type of concrete layer. While for group C, these parameters affected by the fixation technique and adhesion type.

Go to article

Authors and Affiliations

Alaa A. Bashandy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the study of the effect of a Fischer-Tropsch (F-T) synthetic wax on the resistance to permanent deformation of the AC 11S asphalt concrete. The synthetic wax was dosed at 1.5%, 2.5% and 3.5% by weight of bitumen 35/50. The compaction temperatures were 115ºC, 130ºC and 145ºC. The criteria adopted for measuring the resistance to permanent deformation included the following parameters: stiffness modulus at 2, 10 and 20ºC, permanent deformation (RTS), fatigue life determined using the indirect tensile fatigue test (ITFT) and resistance to rutting (WTSAIR, PRDAIR). The test results confirmed the positive infl uence of F-T synthetic wax on enhancing the permanent deformation resistance of asphalt concrete placed at lower compaction temperatures compared to that of standard asphalt concrete compacted at 140ºC.

Go to article

Authors and Affiliations

M. Iwański
G. Mazurek
Download PDF Download RIS Download Bibtex

Abstract

The introduction of a baseline term to the dependency network most often results in a change, break and/or generation of a new sequence of critical path, depending on the type of such a baseline term and the exact date selected. Each of those situations has an impact on the location or need to include new time buffers in the modified Goldratt’s method. The purpose of this article was to identify possible effects brought by declaration of each type of baseline term and to point out actions to be taken in each case. It must be noted that guidelines provided should in each individual case be adapted to the specific character of schedule changes caused by implementation of the relevant baseline term. The example presented herein exemplifies one of such solutions to be implemented as a result of break of the critical path and need to introduce new time buffers.

Go to article

Authors and Affiliations

M. Połoński
K. Pruszyński
Download PDF Download RIS Download Bibtex

Abstract

Synthetic polymer latexes, such as styrene–butadiene rubber (SBR) latex addition in Portland cement has gained wider acceptance in many applications in the construction industry. Polymer-modified cementitious systems seals the pores and micro cracks developed during hardening of the cement matrix, by dispersing a film of polymer phase throughout the concrete. A comprehensive set of experimental test were conducted for studying the compressive properties of SBR latex polymer with crimped polypropylene fibres at relative volume fractions of 0.1 and 0.3%. The results indicated that the addition of polypropylene fibre has little effect on the reduction in the workability of concrete composite containing fly ash and SBR Latex. Increase in polypropylene fibres upto 0.3% Vf showed increase in compressive strength upto 57.5 MPa. The SBR concrete without fibre showed an increase in strength upto 20% compared to plain concrete. Test results also indicated that the compressive strength was increased in SBR fibre concrete by means of an ordinary dry curing process than wet curing because of their excellent water retention due to polymer film formation around the cement grains. On the contrary the compressive strength reduces for SBR fibre concretes under wet curing compared to dry curing.

Go to article

Authors and Affiliations

S. Thirumurugan
A. Sivakumar
Download PDF Download RIS Download Bibtex

Abstract

This article aims to evaluate the potential application of prefabricated panels in energy retrofit of facades in the Portuguese building stock. The fundamentals of this study were part of Annex 50, which was an international ECBCS IEA project, with the purpose of developing an innovative concept of building renovation for the most representative buildings based on prefabricated systems. To analyze the potential application of energy retrofit using prefabricated panels, was important to know the reality of the existing building stock and its morphology. To know the reality of the building stock, an analysis was done based on the existing statistical data and to find the most representative residential buildings, target of the study, three criteria were defined: buildings built before 1990, with 2 to 6 floors and with renovation needs in the exterior envelope.

In the absence of statistical information about buildings morphology, a research work was done in the field. During the collection of data a methodology was developed in which each opening was classified according to a code with three parameters. In the end of the classification, 29 final codes were achieved and was verified that three types of panels have a higher probability of being applied.

Go to article

Authors and Affiliations

J. Sousa
Download PDF Download RIS Download Bibtex

Abstract

The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.

Go to article

Authors and Affiliations

Y.K. Tandel
C.H. Solanki
A.K. Desai
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the author’s non-linear FEM solution of an initially stressless deformed flat frame element, in which the nodes are situated along the axis of the bar initially straight. It has been assumed that each node may sustain arbitrary displacements and rotation. The solution takes into account the effect of shear, the geometrical non-linearity with large displacements (Green-Lagrange’s strain tensor) and moderate rotations (i.e. such ones which allow a linear-elastic behaviour of the material) and alternative small rotations when the second Piola-Kirchhoff stress tensor is applied. This solution is based on [1], concerning beams without any initial bow imperfections. The convergence of the obtained results at different numbers of nodes and Gauss points in the element was tested basing on the example of circular arcs with a central angle of 120°÷180°. The analysis concerned elements with two, three, five, seven, nine and eleven nodes, for the same number of points of numerical integration and also with one more or less. Moreover, the effect of distributing the load on the convergence of the results was analyzed.

Go to article

Authors and Affiliations

J. Zamorowski
Download PDF Download RIS Download Bibtex

Abstract

This investigation is carried out to evaluate the repair and strengthening the techniques of elliptical paraboloid reinforced concrete shells with openings. An experimental program of several different techniques in repair and strengthening is executed. The materials, which are considered for strengthening, are; Glass fiber reinforced polymers GFRP at different position of the shell bottom surface, steel strip and external tie. They loaded by four concentrated loads affected on the corners of the opening. The initial and failure loads as well as the crack propagation for the tested shells at different loading stages, defl ections and failure load for repaired and shells are recorded. A non-linear computer program based on finite element techniques is used to study the behavior of these types of shells. Geometric and materials nonlinearities are considered in the analysis. The efficiency and accuracy of computer program are verified by comparing the program results with those obtained experimentally for the control shell with opening and strengthened shells.

Go to article

Authors and Affiliations

N.N. Meleka
M.A. Safan
A.A. Bashandy
A.S. Abd-Elrazek

Editorial office

Editor-in-Chief
Henryk Zobel


Scientific Advisory Committee
:
Andrzej M. Brandt
Werner Brilon (Germany)
Jacek Chróścielewski
Luc Courard (Belgium)
Andrzej Garbacz
Andrzej Garstecki
Wojciech Gilewski
Marian Giżejowski
Oleg Kapliński
Piotr Konderla
Aleksander Kozłowski
Marian Kwietniewski
Zbigniew Młynarek
Andrzej S. Nowak (USA)
Anna Siemińska-Lewandowska
Jan Szwabowski
Waldemar Świdziński
Andrew P. Tarko (USA)
Marian Tracz
Edmundas K. Zavadskas (Lithuania)
Jerzy Ziółko

Secretary
Dorota Walesiak

Contact

 

Politechnika Warszawska

Wydział Inżynierii Lądowej

Al. Armii Ludowej 16, 00-637 Warszawa, Polska Pokój 618; Telefon 22 234 62 84

e-mail: ace@il.pw.edu.pl;

website: http://ace.il.pw.edu.pl

 

 

 

Open Access policy

Archives of Civil Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0/

Archives of Civil Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/.

This page uses 'cookies'. Learn more