Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2020 | vol. 41 | No 3 |

Download PDF Download RIS Download Bibtex

Abstract

The present work involved an extensive outdoor performance testing program of a solar water heating system that consists of four evacuated tube solar collectors incorporating four wickless heat pipes integrated to a storage tank. Tests were conducted under the weather conditions of Baghdad, Iraq. The heat pipes were of 22 mm diameter, 1800 mm evaporator length and 200 mm condenser length. Three heat pipe working fluids were employed, ethanol, methanol, and acetone at an inventory of 50% by volume of the heat pipe evaporator sections. The system was tested outdoors with various load conditions. Results showed that the system performance was not sensitive to the type of heat pipe working fluid employed here. Improved overall efficiency of the solar system was obtained with hot water withdrawal (load conditions) by 14%. A theoretical analysis was formulated for the solar system performance using an energy balance based iterative electrical analogy formulation to compare the experimental temperature behavior and energy output with theoretical predictions. Good agreement of 8% was obtained between theoretical and experimental values.

Go to article

Authors and Affiliations

Hassan Naji Salman Al-Joboory
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical analysis on turbulent flow and forced-convection characteristics of rectangular solar air heater tube fitted with staggered, transverse, V-shape, modern obstacles on the heated walls. Air, whose Prandtl number is 0.71, is the working fluid used, and the Reynolds number considered equal to 6×103. The governing flow equations are solved using a finite volume approach and the semi-implicit pressure linked equation (SIMPLE) algorithm. With regard to the flow characteristics, the quadratic upstream interpolation for convective kinetics differencing scheme (QUICK) was applied, and a second-order upwind scheme (SOU) was used for the pressure terms. The dynamic thermo-energy behavior of the V-shaped baffles with various flow attack angles, i.e., 50°, 60°, 70°, and 80° are simulated, analyzed, and compared with those of the conventional flat rectangular baffles with attack value of 90°. In all situations, the thermal transfer rate was found to be much larger than unity; its maximum value was around 3.143 for the flow attack angle of 90° and y = H/2.

Go to article

Authors and Affiliations

Younes Menni
Ali J. Chamkha
Chafika Zidani
Boumédiène Benyoucef
Download PDF Download RIS Download Bibtex

Abstract

Providing roughness is an effective method to heat fluids to high temperature. Present paper make use of concave dimple roughness on one and three sides of roughened ducts aimed at determining rise in heat transfer and friction of three sides over one side roughened duct. Three sides roughened duct produces high heat transfer compared to one side roughened. Results are shown as a rise in Nusselt number and friction factor of three sides over one side roughened duct. Experimental investigation was conducted under actual outdoor condition at National Institute of Technology Jamshedpur, India to test various sets of roughened collectors. Roughness parameter varied as relative roughness pitch 8–15, relative roughness height 0.018–0.045, dimple depth to diameter ratio 1–2, Reynolds number 2500–13500 at fixed aspect ratio (width/hight) 8. Highest enhancement in Nusselt number for varying relative roughness pitch, height, and diameter ratio was respectively found as 2.6 to 3.55 times, 1.91 to 3.42 times and 3.09 to 3.94 times compared to one side dimple roughened duct. Highest rise in friction for three sides over one side roughened duct for these varying parameters was respectively found as 1.62 to 2.79 times, 1.52 to 2.34 times and 2.21 to 2.56 times. To visualize the effect of roughness parameter on heat transfer and friction factor, variation in Nusselt number and friction factor for varying roughness parameters with Reynolds number is shown.

Go to article

Authors and Affiliations

Vikash Kumar
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of experimental testing of parameters of the flow of an agitated liquid in a stirred tank with an eccentrically positioned shaft and with a Rushton turbine. The investigations were focused on the impact of the stirrer shaft shift in relation to the stirred tank vertical axis on the agitated liquid mean velocities and the liquid turbulent velocity fluctuations, as well as on the turbulence intensity in the tank. All the experiments were carried out in a stirred tank with the inner diameter of 286 mm and a flat bottom. The adopted values of the shaft eccentricity were zero (central position) and half the tank radius. The liquid flow instantaneous velocities were measured using laser Doppler anemometry.

Go to article

Authors and Affiliations

Jan Talaga
Piotr Duda
Download PDF Download RIS Download Bibtex

Abstract

Increasing of the efficiency of convective cooling of the inner surface of a short duct by changing its geometry was studied by the use of electrochemical limiting current technique (ELDCT). The duct consisted of seven identical, cylindrical segments. The changes of the duct geometry were obtained by mutual displacement of neighbouring segments, towards the radial direction. Mean values of the mass transfer coefficient for each segment and friction losses for the whole channel were measured for Reynolds numbers spanning the range 7700–35300 at the five values of displacement parameter. The results were used for estimation of cooling efficiency. Recommended values of displacement were determined to point the favourable conditions of heat/mass transfer in the duct. The results may be used, e.g. in the design of heat exchangers and channels for cooling of turbine blades and electronic equipment.

Go to article

Authors and Affiliations

Krzysztof Kiedrzyński
Download PDF Download RIS Download Bibtex

Abstract

Artificial roughness has been found to enhance the thermal performance from the collector to air in the solar air heater duct. This paper presents the results of experimental investigation on thermal performance of three sides solar air heater roughened with combination of multiple-v and transverse wire. The range of variation of system and operating parameters is investigated within the limits of relative roughness pitch of 10−25, relative roughness height of 0.018−0.042, angle of attack of 30°−75° at varying flow Reynolds number in the of range of 3000−12000 for fixed value of relative roughness width of 6. The augmentation in fluid temperature flowing under three side’s roughened duct is found to be 36.57% more than that of one side roughened duct. The maximum thermal efficiency is obtained at relative roughness pitch of 10 and relative roughness height of 0.042, and angle of attack of 60°. The augmentation in thermal efficiency of three sides over those of one side roughened duct is found to be 46−57% for varying values of relative roughness pitch, 38−50% for varying values of relative roughness height, and 40−46% for varying values of angle of attack.

Go to article

Authors and Affiliations

Dhananjay Kumar
Laljee Prasad
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the outdoor experimental results for thermal performance analysis of artificially roughened solar air heaters (SAHs). Circular wire ribs have been arranged to form arc shape geometry on the absorber plates and have been tested for two configurations of SAHs named as arc shape apex-downstream flow and arc shape apex-upstream flow SAH. Roughness parameters have been taken as relative roughness pitch in the range of 8–15, angle of attack 45°–75°, and for fixed relative roughness height of 0.0454, duct width to duct height ratio of 11. During the experimental analysis the mass flow rate varied from 0.0100 to 0.0471 kg/s. Based on the experimental results it was found that roughness with apexupstream flow SAH is having higher value of thermal efficiency, heat removal factor and collector efficiency factor as compared to roughness with apexdownstream flow SAH and simple absorber plate SAH. In the range of the operating parameters investigated the maximum of thermal efficiency, heat removal factor, and collector efficiency factor have been found.

Go to article

Authors and Affiliations

Mukesh Kumar Sahu
M.M. Matheswaran
Pardeep Bishnoi
Download PDF Download RIS Download Bibtex

Abstract

For economic growth of nation, the energy plays an important role. The excessive use of fossil fuels results the increase in global warming and depleting the resources. Due to this reason, the renewable energy sources are creating more attraction for researchers. In renewable energy sector, solar energy is the most abundant and clean source of energy. In solar thermal systems, solar air heater (SAH) is the main system which is used for heating of air. As it is simple in construction and cheaper in cost, it is of main interest for the researchers. The concept of first law and second law of thermodynamics is used for the study of the energy and exergy analysis respectively. The energy analysis is of great importance for the study of process effectiveness while the exergetic analysis is another significant concept to examine the actual behavior of process involving various energy losses and internal irreversibility. For efficient utilization of solar energy, the exergy analysis is very important tool for optimal design of solar air heaters. The aim of the present work is to review the works related to energy and exergy analysis of various types of solar air heaters and to find out the research gap for future work.

Go to article

Authors and Affiliations

Harish Kumar Ghritlahre
Piyush Kumar Sahu
Download PDF Download RIS Download Bibtex

Abstract

This research explored different types of two-phase flow patterns that influenced heat transfer rate by assessing rectangular two-phase closed thermosyphon (RTPCT) made from glass with the sides of equal length of 25.2 mm, aspect ratio 5 and 20, evaporation temperature of 50, 70, and 90 °C, working substance addition rate of 50% by volume of evaporator, and water inlet temperature at condensation of 20 °C. Upon testing with aspect ratios 5, three flow patterns emerged which were: bubble flow, slug flow and churn flow respectively. As per the aspect ratio 20, four flow patterns were discovered which were: bubble flow, slug flow, churn flow and annular flow, respectively. Aspect ratio 5 pertains characteristic which resulted in a shorter evaporation rate of the RTPCT than that of the aspect ratio 20, thus, a shorter flow distance from the evaporator section to heat releaser was observed. Therefore, flow patterns at aspect ratio 5 exhibited a faster flow velocity than that of the aspect ratio 20. Furthermore, changes of flow pattern to the one that is important for heat transfer rate can be easily achieved. Churn flow was the most important type of the flow for heat transfer, followed by slug flow. Moreover, with aspect ratio 20, annular flow was the most important flow for the heat transfer, followed by churn flow, respectively. Throughout the test, average heat flux as obtained from the aspect ratio 5 were 1.51 and 0.74 kW/m2 which were higher than those of the aspect ratio 20. The highest heat flux at the operating temperature of the evaporator section was 90 °C, which was equivalent to 2.60 and 1.52 kW/m2, respectively.

Go to article

Authors and Affiliations

Teerapat Chompookham
Surachet Sichamnan
Nipon Bhuwakietkumjohn
Thanya Parametthanuwat
Download PDF Download RIS Download Bibtex

Abstract

Solar air heater (SAH) is an important device for solar energy utilization which is used for space heating, crop drying, timber seasoning etc. Its performance mainly depends on system parameters, operating parameters and meteorological parameters. Many researchers have been used these parameters to predict the performance of SAH by analytical or conventional approach and artificial neural network (ANN) technique, but performance prediction of SAH by using relevant input parameters has not been done so far. Therefore, relevant input parameters have been considered in this study. Total ten parameters were used such as mass flow rate, ambient temperature, wind speed, relative humidity, fluid inlet temperature, fluid mean temperature, plate temperature, wind direction, solar elevation and solar intensity to find out the relevant parameters for ANN prediction. Seven different neural models have been constructed using these parameters. In each model 10 to 20 neurons have been selected to find out the optimal model. The optimal neural models for ANN-I, ANN-II, ANN-III, ANN-IV, ANN-V, ANN-VI and ANN-VII were obtained as 10-17-1, 8-14-1, 6-16-1, 5- 14-1, 4-17-1, 3-16-1 and 2-14-1, respectively. It has been found that ANN-II model with 8-14-1 is the optimal model as compared to other neural models. Values of the sum of squared errors, mean relative error, and coefficient of determination were found to be 0.02138, 1.82% and 0.99387, respectively, which shows that the ANN-II developed with mass flow rate, ambient temperature, inlet and mean temperature of air, plate temperature, wind speed and direction, relative humidity, and relevant input parameters performed better. The above results show that these eight parameters are relevant for prediction.

Go to article

Authors and Affiliations

Harish Kumar Ghritlahre
Purvi Chandrakar
Ashfaque Ahmad

Editorial office

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Editor-in-Chief
Dariusz Mikielewicz, Gdansk University of Technology, Poland

Deputy Editors
Piotr Lampart, The Szewalski Institute of Fluid Flow Machinery PAS, Poland
Marian Trela, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland
Ryszard Białecki, Silesian University of Technology, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

Contact

Wydawnictwo IMP

The Szewalski Institute of Fluid Flow Machinery PAS

Fiszera 14, 80-952 Gdańsk, Poland

telephone: +48 58 5225 141, fax: +48 58 3416 144

e-mail: jfrk@imp.gda.pl; now@imp.gda.pl; redakcja@imp.gda.pl

http://www.imp.gda.pl/archives-of-thermodynamics/

https://www.journals.pan.pl/ather

 

 

Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:
 

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
 
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
 
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
 
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
 
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
 
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
 
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

This page uses 'cookies'. Learn more