Applied sciences

Archives of Metallurgy and Materials

Content

Archives of Metallurgy and Materials | 2019 | vol. 64 | No 2 |

Abstract

The current study were performed in order to assess the fabrication possibility of the metal-ceramic composites based on nanocrystalline substrates. The influence of the variable time of the high energy ball-milling (10, 30 and 50 h) on the structure, pores morphology and microhardness of Ti/ZrO2 and Ti/Al2O3 compositions was studied. The X-ray diffraction analysis confirmed the composite formation for all milling times and sintering in the case of Ti/ZrO2 system. Decomposition of substrates during milling process of Ti/Al2O3 system was also observed. Additionally, the changes of lattice parameter as a function of milling time were studied. The morphology of powders and the microstructure of the sintered samples were observed by scanning electron microscopy (SEM). Also, analysis of microhardness and pores structure were performed.

Go to article

Abstract

Thermodynamic descriptions of the ternary Fe-B-V system and its binary sub-system B-V, are developed using experimental thermodynamic and phase equilibrium data from the literature. The thermodynamic parameters of the other binaries, Fe-V and Fe-B, are taken from earlier assessments slightly modifying the Fe-V description. The work is in the context of a new Fe-B-X (X = Cr, Ni, Mn, V, Si, Ti, C) database.

The solution phases are described using substitutional solution model. The borides are treated as stoichiometric or semi-stoichiometric phases and described with two-sublattice models.

Go to article

Abstract

The high-pressure torsion (HPT) of Ti-Fe alloys with different iron content has been studied at 7 GPa, 5 anvil rotations and rotation speed of 1 rpm. The alloys have been annealed before HPT in such a way that they contained different amounts of α/α' and β phases. In turn, the β phase contained different concentration of iron. The 5 anvil rotations correspond to the HPT steady-state and to the dynamic equilibrium between formation and annihilation of microstructure defects. HPT leads to the transformation of initial α/α' and β-phases into mixture of α and high-pressure ω-phase. The α → ω and β → ω phase transformations are martensitic, and certain orientation relationships exist between α and ω as well as β and ω phases. However, the composition of ω-phase is the same in all samples after HPT and does not depend on the composition of β-phase (which is different in different initial samples). Therefore, the martensitic (diffusionless) transformations are combined with a certain HPT-driven mass-transfer. We observed also that the structure and properties of phases (namely, α-Ti and ω-Ti) in the Ti – 2.2 wt. % Fe and Ti – 4 wt. % Fe alloys after HPT are equifinal and do not depend on the structure and properties of initial α'-Ti and β-Ti before HPT.

Go to article

Abstract

Additive manufacturing (AM) is a process that joins similar or dissimilar materials into application-oriented objects in a wide range of sizes and shapes. This article presents an overview of two additive manufacturing techniques; namely Laser metal deposition (LMD) and Wire arc additive manufacturing (WAAM). In LMD, metallic powders are contained in one or more chambers, which are then channelled through deposition nozzles. A laser heats the particles to produce metallic beads, which are deposited in layers with the aid of an in-built motion system. In WAAM, a high voltage electric arc functions as the heat source, which helps with ensuring deposition of materials, while materials in wire form are used for the feedstock. This article highlights some of the strengths and challenges that are offered by both processes. As part of the authors’ original research work, ­Ti-6Al-4V, Stainless steel 316L and Al-12Si were prepared using LMD, while the WAAM technique was used to prepare two Al alloys; Al-5356 and CuAl8Ni2. Microstructural analysis will focus on similarity and differences in grains that are formed in layers. This article will also offer an overall comparison on how these samples compare with other materials that have been prepared using LMD and WAAM.

Go to article

Abstract

An understanding of the fundamental correlation between grain size and material damping is crucial for the successful development of structural components offering high strength and good mechanical energy absorption. With this regard, we fabricated aluminum sheets with grain sizes ranging from tens of microns down to 60 nm and investigated their tensile properties and mechanical damping behavior. An obvious transition of the damping mechanism was observed at nanoscale grain sizes, and the underlying causes by grain boundaries were interpreted.

Go to article

Abstract

This study was attempted to study for recovery of Li as Li2CO3 from cathode active material, especially NCA (LiNiCoAlO2), recovered from spent lithium ion batteries. This consists of two major processes, carbonation using CO2 and water leaching. Carbonation using CO2 was performed at 600ºC, 700ºC and 800ºC, and NCA (LiNiCoAlO2) was phase-separated into Li2CO3, NiO and CoO. The water leaching process using the differences in solubility was performed to obtain the optimum conditions by using the washing time and the ratio of the sample to the distilled water as variables. As a result, NCA (LiNiCoAlO2) was phase-separated into Li2CO3 and NiO, CoO at 700ºC, and Li2CO3 in water was recovered through vacuum filtration after 1 hour at a 1:30 weight ratio of the powder and distilled water. Finally, Li2CO3 containing Li of more than 98 wt.% was recovered.

Go to article

Abstract

In this study, the corrosion properties of Ti-6Mo-6V-5Cr-3Sn-2.5Zr alloy were investigated as a function of the cold rolling ratio and annealing temperature. The annealing treatment was carried out at temperature of 680°C, 730°C, and 780°C. The highest corrosion potential observed in the specimen with a 10% rolling ratio was 179 mV, which was more positive than that of the non-rolled specimen (–0.214 Vssc). The lowest corrosion current density (1.30×10–8 A/cm2) was observed in the non-rolled specimen which suggested that the integrity of its passive oxide layer was superior to that of the cold-rolled specimens. Time-dependent EIS evaluation revealed that the consistency of the passive oxide layer was highly affected by the subjected rolling ratio over time.

Go to article

Abstract

In this study, we investigate the mechanical behavior of each skin layer, in terms of the nominal stress-strain curve by uniaxial tensile tests using specimens of porcine skin in two forms: dermis containing epidermis, and all three layers. All tests were performed under cyclic loading at the constant strain rate of 10–3 s–1 at ambient temperature. To measure the precise initial cross-sectional areas of each layer, the thickness of each skin layer was quantified by counting the number of pixels on the photo-image using image-processing software. In the tensile test, force-strain curves of the total skin and dermis with epidermis were obtained. Subsequently, a rule of mixtures was applied to determine the nonlinear mechanical properties of the hypodermis layer. In conclusion, we could define the uniaxial tensile behavior of the hypodermis, and additionally predict the weight effect of the dermis and hypodermis layers in the tensile test.

Go to article

Abstract

In general, uniform mixing of particles is desirable in the process of particle handling. However, during the charging of sinter feed and upper ore, size segregation must be induced to prevent heat imbalance, ensure bed permeability, and prevent the loss of fine ore. In this study, upper ore charging was simulated using a discrete element method (DEM) to find the optimal method for controlling particle size segregation, and the segregation characteristics in the upper ore bed were investigated when a deflector plate was applied to the charging machine. The degree of vertical segregation increased when a deflector plate was applied, and it was confirmed that the segregation direction in the upper ore bed can be controlled by adjusting the charging direction of the upper ore by using a deflector plate. In order to apply this method directly to the actual process, further study is needed to understand the influence of the characteristics of the deflector plate such as length and angle.

Go to article

Abstract

The magnetic properties of the U-type ferrite synthesized by a sol-gel process had studied by substituting cobalt with manganese or zinc in cobalt-based U-type ferrite. The substituted U-type ferrite showed a dominant crystal structure at a different substitution ratio of manganese and zinc. The change of the starting temperature of U-type ferrite formation according to substitutional elements was confirmed by TG-DTA analysis. In the case of manganese substitution, the starting temperature of U-type ferrite formation lowered, and on the contrary, when zinc was substituted, it became higher. The magnetic properties of the U-type ferrite substituted with manganese showed a tendency that the saturation magnetization was decreased and the coercivity was increased as the manganese ratio increased. The highest saturation magnetization was 57.9 emu/g in the specific composition (Ba4Co0.5Zn1.5Fe36O60) substituted with zinc.

Go to article

Abstract

Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 µm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.

Go to article

Abstract

Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 μm by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800°C) compressive strength of 0.76 MPa. A 800°C random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10–10 s–1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.

Go to article

Abstract

This study manufactured a SiC coating layer using the vacuum kinetic spray process and investigated its microstructure and wear properties. SiC powder feedstock with a angular shape and average particle size of 37.4 μm was used to manufacture an SiC coating layer at room temperature in two different process conditions (with different degrees of vacuum). The thickness of the manufactured coating layers were approximately 82.4 μm and 129.4 μm, forming a very thick coating layers. The SiC coating layers consisted of α-SiC and β-SiC phases, which are identical to the feedstock. Cross-sectional observation confirmed that the SiC coating layer formed a dense structure. In order to investigate the wear properties, ball crater tests were performed. The wear test results confirmed that the SiC coating layer with the best wear resistance achieved approximately 4.16 times greater wear resistance compared to the Zr alloy. This study observed the wear surface of the vacuum kinetic sprayed SiC coating layer and identified its wear mechanism. In addition, the potential applications of the SiC coating layer manufactured using the new process were also discussed.

Go to article

Abstract

This study investigated the microstructure and high temperature oxidation properties of Fe-25Cr-20Ni-1.5Nb, HK30 alloy manufactured by metal injection molding (MIM) process. The powder used in MIM had a bi-modal size distribution of 0.11 and 9.19 μm and had a spherical shape. The initial powder consisted of γ-Fe and Cr23C6 phases. Microstructural observation of the manufactured (MIMed) HK30 alloy confirmed Cr23C6 along the grain boundary of the γ-Fe matrix, and NbC was distributed evenly on the grain boundary and in the grain. After a 24-hour high temperature oxidation test at air atmospheres of 1000, 1100 and 1200°C, the oxidation weight measured 0.72, 1.11 and 2.29 mg/cm,2 respectively. Cross-sectional observation of the oxidation specimen identified a dense Cr2O3 oxide layer at 1000°C condition, and the thickness of the oxide layer increased as the oxidation temperature increased. At 1100°C and 1200°C oxidation temperatures, Fe-rich oxide was also formed on the dense Cr2O3 oxide layer. Based on the above findings, this study identified the high-temperature oxidation mechanism of HK30 alloy manufactured by MIM.

Go to article

Abstract

FeCl3 bearing etching solution is mainly used for etching of metals used in shadow masks, PCBs and so on. Due course of Invar alloy etching process the FeCl3 bearing etching solution get contaminated with Ni2+ which affect adversely the etching efficiency. Hence, FeCl3 bearing etching solution discarded after several cycle of operation causes an environmental and economic problem. To address both the issues the etching solution was purified through solvent extraction and remained Ni2+ recovered by wet chemical reduction using hydrazine. For optimum Fe3+ extraction efficiency, various extraction parameter were optimized and size and morphology of the recovered pure Ni powder was analyzed. The reported process is a simple process to purify and recover Ni from industry etching solution.

Go to article

Abstract

In this study, cross-section analysis was performed on a novel rotating direct-metal deposition method capable of preliminary surface treatment and damage repair of cylindrical inner walls. The cross-sectional shape, microstructure, and metallurgical composition were analyzed to verify feasibility. No defects such as porosity or cracks were found in the cross section, but asymmetric dilution was observed because of the non-coaxial powder nozzle. Microstructural coarsening was confirmed over a higher dilution area by high-magnification optical microscope images. As the dilution ratio was increased, hard carbides in the dendrite were bulk-diffused into inter-dendrite spaces, and the toughness was lowered by Fe penetration into the deposit. Therefore, the increased laser heat input can be modulated to the typical dilution by decreasing the laser scanning velocity.

Go to article

Abstract

Pre-alloyed Astaloy CrLTM (Fe-1.5 wt% Cr-0.2 wt% Mo), a commercial Fe-based alloy powder for high strength powder metallurgy products, was sintered and hot forged with additions of 0.5 wt% C and 0~2 wt% Cu. To investigate the influence of various Cu contents, the microstructural evolution was characterized using density measurements, scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Transverse rupture strength (TRS) was measured for each composition and processing stage. The correlation between Cu additions and properties of sinter-forged Fe-Cr-Mo-C alloy was discussed in detail.

Go to article

Abstract

The safe and reliable operation of pressurized water reactors (PWRs) depends on the integrity of structural material. In particular, the failure of steam generator (SG) tubes on the secondary side is one of the major concerns of operating nuclear power plants. To establish remediation techniques and manage damage, it is necessary to articulate the mechanism through which various impurities affect the SG tubes. This research aims to understand the effect of impurities (e.g., S, Pb, and Cl) on the stress corrosion cracking of Alloy 600 and 690.

Go to article

Abstract

Porous metals show not only extremely low density, but also excellent physical, mechanical and acoustic properties. In this study, Hastelloy powders prepared by gas atomization are used to manufacture 3D geometries of Hastelloy porous metal with above 90% porosity using electrostatic powder coating process. In order to control pore size and porosity, foam is sintered at 1200~1300°C and different powder coating amount. The pore properties are evaluated using SEM and Archimedes method. As powder coating amount and sintering temperature increased, porosity is decreased from 96.4 to 94.4%. And foam density is increased from 0.323 to 0.497 g/cm3 and pore size is decreased from 98 to 560 μm. When the sintering temperature is increased, foam thickness and strut thickness are decreased from 9.85 to 8.13mm and from 366 to 292 μm.

Go to article

Abstract

The dispersion of nanoparticles in the host matrix is a novel approach to enhance the thermoelectric performance. In this work, we incorporate the TiC (x = 0, 1 and 2 wt.%) nanoparticles into a p-type Bi0.5Sb1.5Te3 matrix, and their effects on microstructure and thermoelectric properties were systematically investigated. The existence of TiC contents in a base matrix was confirmed by energy dispersive X-ray spectroscopy analysis. The grain size decreases with increasing the addition of TiC content due to grain boundary hardening where the dispersed nanoparticles acted as pinning points in the entire matrix. The electrical conductivity significantly decreased and the Seebeck coefficient was slightly enhanced, which attributes to the decrease in carrier concentration by the addition of TiC content. Meanwhile, the lowest thermal conductivity of 0.97 W/mK for the 2 wt.% TiC nanocomposite sample, which is ~16% lower than 0 wt.% TiC sample. The maximum figure of merit of 0.90 was obtained at 350 K for the 0 wt.% TiC sample due to high electrical conductivity. Moreover, the Vickers hardness was improved with increase the addition of TiC contents.

Go to article

Abstract

This study stacked a thin, dense BCuP-5 (Cu-Ag-P based filler metal) on a Cu-plate using the laser cladding (L.C) process to develop a method to manufacture Ag reducing multilayer clad electrical contact material with an Ag-M(O)/Ag/Cu/BCuP-5 structure. Then, the microstructure and macroscopic properties of the manufactured BCuP-5 coating layer were analyzed. The thickness of the manufactured coating layer was approximately 1.7 mm (maximum). Microstructural observation of the coating layer identified Cu, Ag and Cu-Ag-Cu3P ternary eutectic phases like those in the initial BcuP-5 powder. To evaluate the properties of the manufactured coating layer, hardness and adhesion strength tests were performed. The average hardness of the laser cladded coating layer was 183.2 Hv, which is 2.6 times greater than conventional brazed BcuP-5. The average pull-off strength measured using the stud pull test was 341.6 kg/cm2. Cross-sectional observation of the pulled-off material confirmed that the coating layer and substrate maintained a firm adhesion after pull-off. Thus, the actual adhesion strength of Cu/BcuP-5 was inferred to be greater than 341.6 kg/cm2. Based on the above findings, it was confirmed that it is possible to manufacture a sound Ag reducing multilayer clad electrical contact material using the laser cladding process.

Go to article

Abstract

The Mn-Zn ferrite powders prepared by high energy ball milling were heat-treated, subsequently compacted and sintered by spark plasma sintering (SPS). Based on the observation of microstructure, the characteristics of samples after SPS were investigated and compared with ones after conventional sintering. The size of initial powders was approximately 650 nm and decreased to 230 nm after milling at 300 rpm for 3 h. After heat treatment at 973K for 1h, the milled powders became larger to approximately 550 nm in size again and the peaks of Mn2O3 disappeared in XRD patterns. In the samples after SPS, the Fe2O3 and MnZnFe2O4 phases decomposed at the higher temperatures than 1173K and 1373K, respectively, while only MnZnFe2O4 phase was detected in the samples conventionally sintered at 1273~1673K. As the sintering temperature increased, the relative density after SPS increased more quickly than that after conventional sintering. In particular, it reached approximately 99% after SPS at 1473K.

Go to article

Abstract

The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94 % with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.

Go to article

Abstract

Al and Nb-doped Li7La3Zr2O12 (LLZO) and W-doped LLZO lithium ion conducting electrolyte samples were prepared and their H2O stability was investigated. The LLZO samples were exposed to 50% humidified air for 48 h. After H2O exposure, a cubic to tetragonal transformation occurred and acquired SEM images exhibited the presence of reaction phases at the grain boundaries of Al and Nb-LLZO. As a result, the lithium ion conductivity significantly decreased after H2O exposure. On the contrary, W-LLZO showed good stability against H2O. Although the cubic to tetragonal transformation was also observed in H2O-exposed W-LLZO, the decrease in lithium ion conductivity was found to be modest. No morphological changes of the W-LLZO samples were confirmed in the H2O-exposed W-LLZO samples.

Go to article

Abstract

Nanostructured thermoelectric materials receiving great attention for its high thermoelectric performance. In this research, nanostructured n-type Bi2Te2.7Se0.3 alloys have prepared using high energy ball milling and followed by spark plasma sintering. Also, we have varied ball milling time to investigate milling time parameter on the thermoelectric properties of n-type Bi2Te2.7Se0.3 powder. The powders were discrete at 10 min milling and later particles tend to agglomerate at higher milling time due to cold welding. The bulk fracture surface display multi-scale grains where small grains intersperse in between large grains. The maximum Seebeck coefficient value was obtained at 20-min milling time due to their lower carrier density. The κ values were decreased with increasing milling time due to the decreasing trend observed in their κL values. The highest ZT of 0.7 at 350 K was observed for 30-min milling time which was ascribed to its lower thermal conductivity. The Vickers hardness values also greatly improved due to their fine microstructure.

Go to article

Abstract

In this study, an oxide reduction process and a reduction-sintering process were employed to synthesize a thermoelectric alloy from three thermoelectric composite oxide powders, and the thermoelectric properties were investigated as a function of the milling duration. Fine grain sizes were analyzed by via X-ray diffraction and scanning electron microscopy, to investigate the influence of the milling duration on the synthesized samples. It was found that microstructural changes, the Seebeck coefficient, and the electrical resistivity of the compounds were highly dependent on the sample milling duration. Additionally, the carrier concentration considerably increased in the samples milled for 6 h; this was attributed to the formation of antisite defects introduced by the accumulated thermal energy. Moreover, the highest value of ZT (=1.05) was achieved at 373K by the 6-h milled samples. The temperature at which the ZT value maximized varied according to the milling duration, which implies that the milling duration of the three thermoelectric composite oxide powders should be carefully optimized for their effective application.

Go to article

Abstract

We investigated the effect of pre-sintering process on the penetration behavior of Dy in a NdFeB sintered magnet which was grain boundary diffusion treated with Cu/Al mixed Dy source. The pre-sintering of a magnet was performed at 900oC in vacuum and then the pre-sintered body was dipped in the solutions of DyH2, DyH2 + Cu, and DyH2 + Al, respectively. The dipped pre-sintered body were then fully sintered 4 hours at 1060oC followed by a subsequent annealing. The pre-sintering apparently improved the diffusivity of Dy atoms. The penetration of Dy into the magnet extended almost to 2,000 μm from the surface, about four times deeper than that of the normally sintered and diffusion treated one, when the DyH2 + Al solution was used as a Dy source. However, the resulting increase of coercivity was about 4 kOe, somewhat lower than that of the normally treated one, mostly due to excessive oxide formation that hindered to make a continuous Nd-rich grain boundary phase and a core-shell type structure.

Go to article

Abstract

In this study, silicon carbide (SiC) reinforced lead-free solder (SAC305) was prepared by the powder metallurgy method. In this method SAC305 powder and SiC powder were milled, compressed and sintered to prepare composite solder. The composite solders were characterized by optical and scanning electron microscopy for the microstructural investigation and mechanical test. Addition of 1.5 wt. % and 2 wt. % ceramic reinforcement to the composite increased compressive strengths and microhardness up to 38% and 68% compared to those of the monolithic sample. In addition, the ceramic particles caused an up to 55% decrease in the wetting angle between the substrate and the composite solder and porosity was always increased with increase of SiC particles.

Go to article

Abstract

Thermal/cold spray deposition were used for additive manufacture of oxide dispersion strengthened (ODS) steel layers. Mechanically alloyed F/M ODS steel powders (Fe(bal.)-10Cr-1Mo-0.25Ti-0.35Y2O3 in wt.%) were sprayed by a high velocity oxygen fuel (HVOF) and cold spray methods. HVOF, as a thermal method, was used for manufacturing a 1 mm-thick ODS steel layer with a ~95% density. The source to objective distance (SOD) and feeding rate were controlled to achieve sound manufacturing. Y2Ti2O7 nano-particles were preserved in the HVOF sprayed layer; however, unexpected Cr2O3 phases were frequently observed at the boundary area of the powders. A cold spray was used for manufacturing the Cr2O3-free layer and showed great feasibility. The density and yield of the cold spray were roughly 80% and 45%, respectively. The softening of ODS powders before the cold spray was conducted using a tube furnace of up to 1200°C. Microstructural characteristics of the cold sprayed layer were investigated by electron back-scattered diffraction (EBSD), the uniformity of deformation amount inside powders was observed.

Go to article

Abstract

The objective of the present research is to develop the novel multi-compaction technology to produce hybrid structure in powder metallurgy (P/M) components using dissimilar Fe-based alloys. Two distinct powder alloys with different compositions were are used in this study: Fe-Cr-Mo-C pre-alloyed powder for high strength and Fe-Cu-C mixed powder for enhanced machinability and lower material cost. Initially, Fe-Cu-C was pre-compacted using a bar-shaped die with lower compaction pressure. The green compact of Fe-Cu-C alloy was inserted into a die residing a half of the die, and another half of the die was filled with the Fe-Cr-Mo-C powder. Then they subsequently underwent re-compaction with higher pressure. The final compact was sintered at 1120°C for 60 min. In order to determine the mechanical behavior, transverse rupture strength (TRS) and Vickers hardness of sintered materials were measured and correlated with density variations. The microstructure was characterized using optical microscope and scanning electron microscope to investigate the interfacial characteristics between dissimilar P/M alloys.

Go to article

Abstract

This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic ­Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10–1 mm3 and 7.8×10–2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.

Go to article

Abstract

Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2Fe14B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2Fe14B phase tend to align to c-axis.

Go to article

Abstract

The levitation melting has a potentially wide range of applications, especially in the processing of reactive metals whose contact with the crucible material causes their contamination and damage to the crucible itself. Despite its advantages, levitation melting, already proposed in the 1920s, has not yet found significant use in industrial conditions. This is due to the nature of the electromagnetic field used in previously developed devices. The disappearance of this field in the system axis causes overcoming, in the case of larger charges, surface tension forces and metal leakage from the device. The article contains a comparative analysis of a conventional solution and a newly developed levitation melting device, whose completely different design eliminates the previous weight limit of the charge.

Go to article

Abstract

Higher active power of a submerged arc furnace is commonly believed to increase its capacity in the process of ferrosilicon smelting. This is a true statement but only to a limited extent. For a given electrode diameter d, there is a certain limit value of the submerged arc furnace active power. When this value is exceeded, the furnace capacity in the process of ferrosilicon smelting does not increase but the energy loss is higher and the technical and economic indicators become worse. Maximum output regarding the reaction zone volumes is one of parameters that characterize similarities of furnaces with various geometrical parameters. It is proportional to d3 and does not depend on the furnace size. The results of statistical analysis of the ferrosilicon smelting process in the 20 MVA furnace have been presented. In addition to basic electrical parameters, such as active power and electrical load of the electrodes, factors contributing to higher resistance of the furnace bath and resulting lower reactive power Px demonstrate the most significant effect on the electrothermal process of ferrosilicon smelting. These parameters reflect metallurgical conditions of ferrosilicon smelting, such as the reducer fraction, position of the electrodes and temperature conditions of the reaction zones.

Go to article

Abstract

3D printing in FDM (Fused Deposition Modelling) technology is commonly used, mainly in the preparation of prototypes, but also for the production of ready-made elements. Objects printed using the FDM method have characteristic, adverse surface features related to the limitations of this technology. That is why surface treatment of 3D prints becomes crucial. One of the method is metal plating of elements. The most frequently used material in FDM technology is PLA (polylactic acid) and ABS (acrylonitrile butadiene styrene). Study of surface parameters determination for ABS prints after galvanic copper plating is presented in this paper. For this purpose, samples printed with ABS were smoothed in acetone vapour. Most favorable parameters of the surface were obtained for samples that had contact with acetone vapour for 60 minutes. Ultimately, surface analysis of samples after graphite coating and subjected to copper plating was performed. It was found that surface parameters are close to results obtained with traditional methods of metal processing.

Go to article

Abstract

As part of the presented work, tests were carried out to check the possibility of replacing of conventional reducers used in the lead pyrometallurgical processes by cheaper, but equally effective substitutes. For research of lead oxide reduction, the following fine-grained carbonaceous materials were used, ie anthracite dust and coal flotation concentrate, as well as traditional used coke breeze for comparison. The obtained test results indicate a similar ability to reduce the lead oxide of all studied carbonaceous materials.

Go to article

Abstract

Purging the liquid steel with inert gases is a commonly used treatment in secondary metallurgy. The main purposes for which this method is used are: homogenization of liquid steel in the entire volume of the ladle, improvement of mixing conditions, acceleration of the absorption process of alloy additives and refining of liquid steel from non-metallic inclusions. The basic processing parameters of this treatment are: gas flow rate and the level of gas dispersion in liquid steel. The level of gas dispersion depends on the design and location of the porous plug in the ladle. Therefore, these parameters have a significant impact on the phenomena occurring in the contact zone of liquid steel with slag. Their improper selection may cause secondary contamination of the bath with exogenous inclusions from the slag, or air atmosphere due to discontinuity of the slag and exposure of the excessive surface of the liquid steel free surface. The article presents the results of modelling research of the effect of liquid steel purging with inert gases on phenomena occurring in this zone.

The research was carried out using the physical (water) model of steel ladle. As a modelling liquid representing slag, paraffin oil was used, taking into account the conditions of similarity with particular reference to the kinematic viscosity. The results of the conducted research were presented in the form of visualization of phenomena occurring on the surface of the model liquid free surface in the form of photographs. The work is a part of a bigger study concerning modelling of ladle processes.

Go to article

Abstract

The paper describes research and development of aluminium melt refining technology in a ladle with rotating impeller and breakwaters using numerical modelling of a finite volume/element method. The theoretical aspects of refining technology are outlined. The design of the numerical model is described and discussed. The differences between real process conditions and numerical model limitations are mentioned. Based on the hypothesis and the results of numerical modelling, the most appropriate setting of the numerical model is recommended. Also, the possibilities of monitoring of degassing are explained. The results of numerical modelling allow to improve the refining technology of metal melts and to control the final quality under different boundary conditions, such as rotating speed, shape and position of rotating impeller, breakwaters and intensity of inert gas blowing through the impeller.

Go to article

Abstract

Three plants extracts were used for biosynthesis of Ag nanoparticles (AgNPs). AgNPs nucleation process requires effective reduction agents which secure Ag+ to Ag0 reduction and also stabilizing/capping agents. The UV-vis and TEM observation revealed that the best results were obtained by R. officinalis leaf extract. The strong SPR band peak appeared at the wavelength 418 nm. Synthetized AgNPs were globular, fine (~20 nm), uniform and stabile throughout the experiment. A rapid rate of AgNPs synthesis was also significant and economically advantageous factor. Fine (10-20 nm) and globular nanoparticles were synthetized also by U. dioica leaf extract, but the stability of nanoparticles was not permanent. Despite V. vitis-idaea fruit extract contains a lot of reducing agents, UV-vis did not confirm the presence of AgNPs in solution. Synthetized Ag particles were very unstable, Ag particles agglomerated very fast and clearly indicated sediment was formed.

Go to article

Abstract

In this paper, an attempt was made to explain the causes of surface delamination in high carbon steel wires during the torsion test. For end wires with 1.7 mm diameter drawn at speeds of 5, 10, 15, 20, 25 m/s, technological tests were carried out. Then the susceptibility of the wire to plastic strain was determined. The microstructure analysis complemented the research. Analysis of the fracture torsion test showed that the wires drawn at speeds exceeding 15 m/s are delamination, which disqualify it as a material for a rope and a spring. The source of delamination in high carbon steel wires is their stronger strengthening, especially of the surface layer, which leads to a decrease in the orientation of the cementite laminaes and an increase in the degree of their fragmentation.

Go to article

Abstract

The work presents results of the investigations of effect of intensive cooling of alloy AC-AlSi7Mg with alloy additions on microstructure and mechanical properties of the obtained casts. The experimental casts were made in ceramic molds preliminarily heated to 180°C, into which AC-AlSi7Mg with alloy additions was poured. Within implementation of the research, a comparison was made of the microstructure and mechanical properties of the casts obtained in ceramic molds cooled at ambient temperature and the ones intensively cooled in a cooling liquid. Kinetics and dynamics thermal effects recorded by the TDA method were compared. Metallographic tests were performed with the use of optical microscope and strength properties of the obtained casts were examined: UTS, Elongation and HB hardness.

Go to article

Abstract

In this work, the effect of heat transfer during explosive welding (EXW) and post-processing annealing on the microstructural and chemical composition changes have been thoroughly analysed using scanning and transmission electron microscopies and X-ray synchrotron radiation. Several combination of explosively welded metal compositions were studied: Ti with Al, Cu with Al, Ta or stainless steel, stainless steel with Zr or Ta and Ti with carbon steel. It was found that the melted metals exhibit a strong tendency to form brittle crystalline, nano-grained or even amorphous phases during the solidification. For all analysed metal combinations most of the phases formed in the zones of solidified melt do not appear in the equilibrium phase diagrams. Concurrently, the interfacial layers undergo severe plastic deformation forming nano-grained structures. It has been established that these heavily deformed areas can undergo dynamic recovery and recrystallization already during clad processing. This leads to the formation of new stress-free grains near the interface. In the case of low temperature and short time post processing annealing only the melted zones and severely deformed layers undergo recovery and recrystallization. However, drastic changes in the microstructure occurs at higher temperature and for longer annealing times. Applying such conditions leads to diffusion dominant processes across the interface. As a consequence continuous layers of intermetallic phases of equilibrium composition are obtained.

Go to article

Abstract

Mordenite-zeolite supported Ca-Cu and Ba-Cu catalysts (Ca-Cu/MOR and Ba-Cu MOR) were successfully fabricated for direct decomposition of both NF3 and N2O gases contained in waste gas stream of (semiconductor) electronics industry. N2O conversion rates of Ca-Cu and Ba-Cu catalysts were 79 and 86%, respectively, at 700°C and 1 atm under space velocity of 5000 h–1. The Ca-Cu catalyst was especially noteworthy in that its capability of converting N2O could be maintained even after its exposure to co-feeding NF3 gas constituent in the waste gas stream. Compositional and surface morphological analyses of the Ca-Cu and Ba-Cu catalysts were made before and after exposure to the waste gas stream to examine any noticeable degradation or change of the catalysts. Unlike Ba-Cu catalyst, SiO2 constituent of the Ca-Cu catalyst was found to remain immune to the NF3-cofeeding waste gas stream, casting a positive prospect for superior and steady N2O decomposition performance via maintenance of its structural integrity.

Go to article

Abstract

Nil strength temperature of 1062°C and nil ductility temperature of 1040°C were experimentally set for CuFe2 alloy. The highest formability at approx. 1020°C is unusable due to massive grain coarsening. The local minimum of ductility around the temperature 910°C is probably due to minor formation of γ-iron. In the forming temperatures interval 650-950°C and strain rate 0.1-10 s–1 the flow stress curves were obtained and after their analysis hot deformation activation energy of 380 kJ·mol–1 was achieved. Peak stress and corresponding peak strain values were mathematically described with good accuracy by equations depending on Zener-Hollomon parameter.

Go to article

Abstract

Brazing of two dissimilar structural materials; Zircaloy-4 and SS-316L was performed at 900oC under high vacuum conditions. The metallic glass ribbons (Zr55Cu30Al10Ni2Fe3-at. %) of 30 µm thickness, were used as an interlayer. The bonded region was characterized by scanning electron microscope (SEM), energy dispersive spectroscope (EDS) and microhardness testing. The metallurgical bond formation was due to compositional changes in the molten interlayer and later on its subsequent solidification. Assessment of the bonded zone (BZ) revealed three distinct regions (Region-I, Region-II and Region-III). Diffusion transformation was observed in Region-I and Region-III which were interface with base alloys SS-316L and Zircaloy-4 respectively. However, Region-II at the middle of the BZ was composed of isothermally and athermally solidified portions. The highest values of Microhardness were observed in Region-III which was due to the presence of hard phases. Moreover, a crack parallel to BZ was observed in Region-III and was attributed to differential contraction of base alloys during cooling. Maximum shear stress acting on the BZ was calculated and correlated to the brittle phase cracking.

Go to article

Abstract

A new NiTi-based multi-component Ni35Ti35Ta10Co10Cu10 (at.%) alloy was obtained by vacuum arc melting. The microstructure of the alloy has been studied using scanning and transmission electron microscopy, backscatter electron diffraction and X-ray diffraction techniques. The performed measurements showed presence of two cubic and one tetragonal phases. Energy dispersive X-ray spectroscopy analysis confirmed that all the observed phases contained all five principal elements.

Go to article

Abstract

Modern crystallography faces a demanding challenge of describing atomic structure and diffraction pattern of quasicrystals, which, after 30 years of Shechtman’s discovery, is still an open field of research. The classical approach based on the Braggs and Laue equations in three-dimensional space is useless, because the direct and the reciprocal lattices cannot be introduced for aperiodic systems. A standard solution to this problem, applied by number of scientists, is to retrieve periodicity in high dimensions. This is a purely mathematical approach with some difficulties from a point of view of physics. It is mathematically elegant, but not applicable to all aperiodic systems (e.g. Thue-Morse or Rudin-Shapiro sequences). It meets also a serious trouble in a proper description of structural defects, like phasons. In our opinion the most successful alternative to the multidimensional description is a statistical method of diffractional and structural analysis of aperiodic systems, also known as the average unit cell approach (AUC). In this work an application of the AUC method to selected aperiodic systems, including modulated structures, quasicrystals and covering clusters, is discussed in the form of a mini-review. A reader can find more details in the cited references.

Go to article

Abstract

In this work, vacuum hot pressed Ni-Mn-Sn-In Heusler alloys with different concentration of In (0, 2 and 4 at.%), were investigated. The magneto-structural behaviour and microstructure dependencies on chemical composition and on heat treatment were examined. It was found that the martensite start transformation temperature increases with growing In content and to a lesser extent with increasing temperature of heat treatment. The high energy X-ray synchrotron radiation results, demonstrated that both chemical composition as well as temperature of heat treatment slightly modified the crystal structures of the studied alloys. Microstructural investigation performed by transmission electron microscopy confirmed chemical composition and crystal structure changes in the alloys.

Go to article

Abstract

In this paper, the influence of Mo addition on the structure and mechanical properties of the NiCoMnIn alloys have been studied. Series of polycrystalline NiCoMnIn alloys containing from 0 to 5 mas.% of Mo were produced by the arc melting technique. For the alloys containing Mo, two-phase microstructure was observed. Mo-rich precipitates were distributed randomly in the matrix. The relative volume fraction of the precipitates depends on the Mo content. The numbers of the Mo rich precipitates increases with the Mo contents. The structures of the phases were determined by the TEM. The mechanical properties of the alloys are strongly affected by Mo addition contents. Brittleness of the alloys increases with the Mo contents.

Go to article

Abstract

To investigate the impact of various Al-Ti-B grain-refiners on solidification and grain-refining performance, a wrought aluminium alloy AA6182 was used. Three different grain-refiners from different manufacturers were used to establish the efficiency, i.e. contact time before casting, on the primary solidification and grain formation size. The primary solidification of α-Al grains at inoculation was observed by using thermal analysis (TA). Differential scanning calorimetry (DSC) was used in order to analyze the quality of various grain-refiners. The size of the primary grains was analyzed using optical microscopy (OM). Scanning electron microscopy (SEM) was used to estimate the size and distribution of Al3Ti and TiB2 particles in various grain-refiners and to establish the best efficiency of the investigated grain-refiners.

Within 1-4 min of inoculation the smallest fine equiaxed grains were achieved when either one of the investigated grain-refiners was added. It was established, that grain-refiner A contains higher content of impurities which do not melt in the experimental temperature range made by DSC method. The most pure grain-refiner turned out to be grain-refiner B, in which the most optimal number of TiB2 particles and particle size distribution was found.

Go to article

Abstract

NiTi alloys are successfully used in engineering and medical applications because of their properties, such as shape memory effect, superelasticity or mechanical strength. A composite with Mg matrix, due to its vibration damping properties, can be characterized by low weight and good vibration damping properties. In this study, a combination of two techniques was used for successful fabrication of Mg composite reinforced by NiTi alloy preform. The porous preforms synthesized by Self-propagating High-temperature Synthesis (SHS) from elemental powders were subsequently infiltrated with Mg by squeeze casting. The effects were examined with scanning electron microscope with EDS detector, X-ray diffraction and microindentation. The inspection has shown well-connected matrix and reinforcement; no reaction at the interface and open porosities fully infiltrated by liquid Mg. Moreover, analysis of samples’ fracture has exhibited that crack propagates inside the Mg matrix and there is no detachment of reinforcement.

Go to article

Abstract

Two different complexing agents, namely citric acid and gelatin, were used for gel-combustion synthesis of yttria stabilized zirconia. The influence of synthesis conditions on properties of powders and sintered bodies was studied by X-ray Diffraction Analysis (XRD), Scanning Electron Microscope (SEM) and helium pycnometer measurements.

Go to article

Abstract

The paper presents the results of the Ti10V2Fe3Al alloy crack resistance assessment using the Rice’s J-integral technique as a function of morphology and volume fraction of α-phase precipitates. Titanium alloys characterized by the two-phase structure α + β are an interesting alternative to classic steels with high mechanical properties. Despite the high manufacturing costs and processing of titanium alloys, they are used in heavily loaded constructions in the aerospace industry due to its high strength to density ratio. The literature lacks detailed data on the influence of microstructure and, in particular, the morphology of α phase precipitates on fracture toughness in high strength titanium alloys. In the following work an attempt was made to determine the correlation between the microstructure and resistance to cracking in the Ti10V2Fe3Al alloy.

Go to article

Abstract

Fatigue investigations of two 4XXX0-series aluminum alloys (acc. PN-EN 1706) within a range of fewer than 104 cycles at a coefficient of cycle asymmetry of R = –1 were performed in the current paper. The so-called modified low-cycle test, which provided additional information concerning the fatigue life and strength of the tested alloys, was also performed. The obtained results were presented in the form of diagrams: stress amplitude σa – number of cycles before damage N. On the basis of the microscopic images of sample fractures, the influence of the observed casting defects on the decrease of cycle numbers at a given level of stress amplitude were analyzed. Based on the images and dimensions of the observed defects, stress intensity factor KI was analytically determined for each. Their numerical models were also made, and stress intensity factor KI was calculated by the finite element method (FEM).

Go to article

Abstract

The Ti15Mo alloy has been studied towards long-term corrosion performance in saline solution at 37°C using electrochemical impedance spectroscopy. The physical and chemical characterization of the material were also investigated. The as-received Ti15Mo alloy exhibits a single β-phase structure. The thickness of single-layer structured oxide presented on its surface is ~4 nm. Impedance measurements revealed that the Ti15Mo alloy is characterized by spontaneous passivation in the solution containing chloride ions and formation of a double-layer structured oxide composed of a dense interlayer being the barrier layer against corrosion and porous outer layer. The thickness of this oxide layer, estimated based on the impedance data increases up to ~6 nm during 78 days of exposure. The observed fall in value of the log|Z|f = 0.01 Hz indicates a decrease in pitting corrosion resistance of Ti15Mo alloy in saline solution along with the immersion time. The detailed EIS study on the kinetics and mechanism of corrosion process and the capacitive behavior of the Ti15Mo electrode | passive layer | saline solution system was based on the concept of equivalent electrical circuit with respect to the physical meaning of the applied circuit elements. Potentiodynamic studies up to 9 V vs. SCE and SEM analysis show no presence of pitting corrosion what indicates that the Ti15Mo alloy is promising biomaterial to long-term medical applications.

Go to article

Abstract

This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) µm and roughness 0.40(7) µm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration.

Go to article

Abstract

An equiatomic multi-component alloy Ni20Ti20Ta20Co20Cu20 (at. %) was obtained using vacuum arc melting. In order to characterize such an alloy, microstructure analysis has been performed using Scanning and Transmission Electron Microscopy, Electron Backscattered Diffraction, X-ray Diffraction and Energy Dispersive X-ray Spectroscopy techniques. Microstructure analysis revealed the presence of one rhombohedral and two cubic phases. Energy Dispersive X-ray Spectroscopy measurements revealed that both observed phases include five chemical elements in the structure. Using Rietveld refinement approach the lattice parameters were refined for the observed phases.

Go to article

Abstract

The paper refers to pulverization and sintering of the (Fe80Nb6B14)0.88Tb0.12 high coercive alloy. The powder was sintered using the ultra-fast current aided method. It turned out that too long discharge time leads to appearing of a soft magnetic phase and simultaneously, decrease in coercivity of the compacted powder. Nevertheless, it was possible to establish preference technology parameters, preserving magnetic hardness of the alloy. As a final test, an impact of Co-powder addition on magnetic properties was studied. The introduced soft magnetic phase (about 20 wt. %) caused about 30% increase of magnetic remanence, which is a result of direct exchange interactions between the two phases.

Go to article

Abstract

The article reports the results of research on the influence of the alternate intermittent deformation of specimens by a torsion method on the Bauschinger effect in the Zr-1%Nb zirconium-based alloy. Tests were carried out using an STD 812 torsion plastometer. Based on the tests carried out, diagrams have been plotted, which represent the influence of the pre-deformation magnitude, the temperature of heat treatment prior to deformation, and deformation rate on the variation in the values of the flow stress and yield strength of the alloy under study. Conditions have been defined, in which larger magnitudes of plastic deformation of ­Zr-1Nb% alloy material can be used during its cold plastic working.

Go to article

Abstract

The paper presents the results of theoretical analysis and experimental research on the material’s influence and tool geometry on the welding speed and mechanical strength of Al 2024 thin sheet metal joints. To make the joints, tungsten carbide and ceramics tools with a smooth and modified surface of the shoulder were used. The choice of the geometrical parameters of the tool was adjusted to the thickness of the joined sheet. During welding, the values of axial and radial force were recorded to determine the stability of the process. The quality of the joint was examined and evaluated on the basis of visual analysis of the surface and cross-sections of the joint area and the parent material, and subjected to mechanical strength tests. The test results indicate that both the geometry of the tool shoulder and the tool material have a decisive influence on the quality of the joint and the welding speed, making it possible to shorten the duration of the entire process.

Go to article

Editorial office

EDITORIAL BOARD

Editor-in-Chief:

Paweł Zięba, Institute of Metallurgy and Materials Science PAS, Poland

Editors:

Krzysztof Fitzner, AGH University of Science and Technology, Poland

Bogusław Major, Institute of Metallurgy and Materials Science PAS, Poland

Przemysław Fima, Institute of Metallurgy and Materials Science PAS, Poland

EDITORIAL ADVISORY BOARD

Piotr Bała, AGH University of Science and Technology, Poland

Leszek Blacha, Silesian University of Technology, Poland

Zbigniew Bojar, Military University of Technology, Poland

Eduardo Cesari, University of the Balearic Islands, Spain

Kyu Rhee Chang, Korea Atomic Energy Research Institute, Korea

Jan Dusza, Institute of Materials Research, SAS, Slovakia

Władysław Gąsior, Institute of Metallurgy and Materials Science PAS, Poland

Zbigniew Gronostajski, Wroclaw University of Technology, Poland

Edward Guzik, AGH University of Science and Technology, Poland

Peter D. Hodgson, Deakin University, Australia

Herbert Ipser, University of Vienna, Austria

George Kaptay, Research Institute on Nanotechnology, Hungary

Alexandre Kodentsov, Eindhoven University of Technology, Netherlands

Rafał Kozubski, Jagiellonian University, Poland

Aleš Kroupa, Institute of Physics of Materials AS CR, Czech Republic

Piotr Kula, Lodz University of Technology, Poland

Jan Kusiński, AGH University of Science and Technology, Poland

Roman Kuziak, Institute of Ferrous Metallurgy, Poland

Jüergen Lackner, Laser Center Leoben, Joanneum Research, Austria

Kee Ahn Lee, Inha University, Korea

Marcin Leonowicz, Warsaw University of Technology, Poland

Jerzy Lis, AGH University of Science and Technology, Poland

Leszek B. Magalas, AGH University of Science and Technology, Poland

Graeme E. Murch, University of Newcastle, Australia

Alberto Passerone, Institute of Physical Chemistry of Materials, Italy

Henryk Paul, Institute of Metallurgy and Materials Science PAS, Poland

Maciej Pietrzyk, AGH University of Science and Technology, Poland

Eugen Rabkin, Technion Israel Institute of Technology, Israel

Amir Shirzadi, University of Cambridge, United Kingdom

Jerzy Sobczak, Foundry Research Institute, Poland

Boris B. Straumal, Russian Academy of Sciences, Russia

Pekka Taskinen, Aalto University, Finland

Stefan Zaefferer, Max-Planck-Institut, Germany

Ehrenfried Zschech, Fraunhofer Institute for Non-Destructive Testing, Germany

Contact

Editorial address:


Instytut Mechaniki Górotworu PAN

ul. Reymonta 27

30-059 Kraków, Poland

Tel. +48 (12) 6376200 w. 58


e-mail : archiwum4@wp.pl, amm@imim.pl

 

Instructions for authors

Archives of Metallurgy and Materials is a quarterly of Polish Academy of Sciences and Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, which publishes original scientific papers and reviews in the fields of metallurgy and materials science. Papers with focus on synthesis, processing and properties of metal materials, including thermodynamic and physical properties, phase relations, and their relation to microstructure of materials are of particular interest.

Submissions to Archives of Metallurgy and Materials should clearly present aspects of novelty of findings, originality of approach etc. If modeling is presented it should be logically connected to experimental evidence. Submissions which just report the results without in depth analysis and discussion will not be published.

Submission of a manuscript implies that it has not been published previously, that it is not under consideration for publication elsewhere, and that if accepted it will not be published elsewhere in the same form.

Authors of review type manuscripts are requested to send such manuscripts to Editor-in-Chief for preliminary evaluation. Only manuscripts approved by the Editor-in-Chief can be submitted to the journal for further processing. This does not guarantee acceptance for publication since all

manuscripts are subject to regular review procedure.

When preparing the manuscript, please pay attention to the following rules:

1. Manuscript submission

1.1. Manuscripts to be considered for publication should be submitted to the Editorial Office via www.editorialsystem.com/amm/. Authors should designate corresponding author, whose responsibility is to represent the Authors in contacts with the Editorial Office. The corresponding author receives an e-mail notification confirming the submission of the manuscript to the Editorial Office and is informed about the progress of the review process.

1.2. Manuscript should not exceed 15 pages of full-size paper (A4), must be double spaced (please use 12 point font), with generous margins, and the pages must be numbered. Authors should submit an electronic file of their manuscript in Microsoft Word (minimum : version 2000)

1.3. All manuscripts must be written in good English. Both British and U.S. English are acceptable but Authors should be consistent in their usage. It is sole responsibility of the Authors to make sure that the manuscript is grammatically correct and spell checked. Authors are strongly encouraged to have the manuscript proofread by a native speaker of English or a language professional, before it is submitted to the editorial office. Papers written in poor English will be automatically rejected without being subjected to review.

1.4. Authors should submit an electronic copy of final version of their paper in Microsoft Word

Format, shemes (sketches) and figures saved as .eps, .jpeg, or .tiff.

1.5. Articles submitted for publication should include abstract and maximum 5 keywords.

1.6. Please adhere to the following order of presentation:

Author(s) with first names in full.

Affiliation(s): in a short form (Institution, City, Country). Use the superscripts (*, **, . . .) after the Authors’ names in case of different affiliations.

Title: All words in lower case (first letter of first word capitalized).

Abstract: maximum 10 lines, including primary objective, research design, methods and procedures, main outcomes and results. Do not use abbreviations in the abstract.

Keywords: 5 maximum.

Main text: Begin on the second page with Introduction, followed by Experimental (Materials and Methods) and/or Theory section, Results, Discussion, and end with Conclusion section and Acknowledgement. When appropriate the Authors may choose to combine Results section and Discussion section into one Results and discussion section. Make sure the text in sections is divided logically into paragraphs.

Use the decimal system for sections, subsections and (at the most) sub-subsections, as exemplified in the headings of these instructions.

All abbreviations should be spelled out the first time they are introduced in text or references. Thereafter the abbreviation can be used.

Appendices

References

Correspondence address: title, name, postal address, telephone and e-mail address of the corresponding Author.

Figure captions

Tables

2. Manuscript preparation

2.1. Formulae, equations and units

Formulae and equations should be typed on separate lines and numbered consecutively in parentheses on the right side (1) . . . (n). Vectors must be indicated as such. Size of symbols should be kept uniform for all equations in the manuscript. Formulae and equations should be referred to in the text as follows: Eq. (1).

Numbers and units must be separated by a space, e.g. 5.5 wt.%, 273.15 K, 1013 MPa, etc. The only exception are angle degrees, e.g. 90°.

2.2. Figures

Figures are usually printed in reduced size (fitting column width of 85 mm) and this should be taken into account when preparing them. For the best results, make sure that lettering on figures and micrographs is at least 2 mm high after reduction, and the style of labeling must be uniform for all figures. Each figure should have its own caption explaining the content without reference to the text. Figure captions should be typed on a separate page at the end of manuscript. The appropriate place of in the text should be indicated by <Fig. 3 > written in separate line. Figures should be referred to in text as follows: Fig. 1. The magnification must be indicated by a labeled scale marker on the micrograph itself, not drawn below it. For optimum printing quality micrographs should be saved as .eps or .tiff at a resolution of at least 300 dpi while line drawings at a resolution of at least 600 dpi.

2.3. Tables

Tables together with captions should be typed on separate page at the end of manuscript. Tables are to be numbered consecutively using Arabic numbers in the text (TABLE 1 . . . n). A caption must be placed above respective table and should explain the symbols used in the heading and in the left hand column. Tables should be referred to in the text as follows: TABLE 1.

2.4. References

References should be typed on separate pages and numbered consecutively applying the system accepted by the Quarterly (initials and names all authors, journal title [abbreviated according to the Journal Title Abbreviations of Web of Science: http://library.caltech.edu/reference/abbreviations/ or book title; journal volume or book publisher; page spread; publication year in bracket). Use of DOI is strongly encouraged.

Samples:

Journals:

[1] L.B. Magalas, Arch. Metall. Mater. 60 (3), 2069-2076 (2015).

[2] E. Pagounis, M.J. Szczerba, R. Chulist, M. Laufenberg, Appl. Phys. Lett. 107, 152407 (2015).

[3] H. Etschmaier, H. Torwesten, H. Eder, P. Hadley, J. Mater. Eng. Perform. (2012), DOI: 10.1007/s11665-011-0090-2 (in press).

Books:

[4] K.U. Kainer (Ed.), Metal Matrix Composites, Wiley-VCH, Weinheim (2006).

[5] K. Szacilowski, Infochemistry: Information Processing at the Nanoscale, Wiley (2012).

[6] L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation, Springer, New York (2008).

Proceedings or chapter in books with editor(s):

[7] R. Major, P. Lacki, R. Kustosz, J. M. Lackner, Modelling of nanoindentation to simulate thin layer behavior, in: K. J. Kurzydłowski, B. Major, P. Zięba (Eds.), Foundation of Materials Design 2006, Research Signpost (2006).

Internet resource:

[8] https://www.nist.gov/programs-projects/crystallographic-databases, accessed: 17.04.2017

Academic thesis (PhD, MSc):

[9] T. Mitra, PhD thesis, Modeling of Burden Distribution in the Blast Furnace, Abo Akademi University, Turku/Abo, Finland (2016).

3. Fees

No honorarium will be paid. The journal does not have article processing charges (APCs) nor article submission charges.

4. Review and proofread process

4.1. Peer review process

All submitted manuscripts undergo review by renowned specialists appointed by the Editor-in-Chief and members of the Editorial Board. Reviewers receive guidance to help them perform the review, and submit written opinion on the manuscript together with recommendation to accept as is, or reject, or accept after revision. In the latter case i.e. when revision is requested, the authors are obliged to respond to Editor and Reviewers’ comments in detail and make revisions to the manuscript. A rebuttal to Reviewers’ comments can also be sent via the Editorial System in writing.

Decision to reject the article is taken by the Editorial Board with the final decision belonging to the Editor, who may appoint another reviewer if necessary.

Reviewers remain anonymous to Authors and their identity cannot be revealed by the Editorial Office.

In a separate file, the authors are requested to suggest names and contact details (affiliations and valid e-mail addresses) of at least three experts who could serve as reviewers.

Brief explanation (2-3 sentence-long) why each person is suitable as a reviewer should also be provided. The suggested reviewers cannot be from the same country as affiliation of the corresponding author. The decision to appoint a reviewer belongs solely to the editor.

4.2. Revised manuscript submission

When revision of a manuscript is requested, Authors should return the revised version of their manuscript as soon as possible. Prompt action may ensure fast publication if a paper is finally accepted for publication in Arch. Metall. Mater. If it is the first revision of an article Authors are requested to return their revised manuscript within 14 days.

If it is the second revision Authors are requested to return their revised manuscript within 7 days

4.3 Final proofreading

Authors will receive a pdf file with the edited version of their manuscript for final proofreading. This is the last opportunity to view an article before its publication on the journal web site. No changes or modifications can be introduced once it is published. Thus authors are requested to check their proof pages carefully against manuscript within 3 working days and prepare a separate document containing all changes that should be introduced. Authors are sometimes asked to provide additional comments and explanations in response to remarks and queries from the language or technical editors.

5. Original version

Starting from issue 1/ 2018, Volume 63, Archives of Metallurgy and Materials is published in electronic via www.journals.pan.pl. The printed version is printed only for designated libraries (legal basis: Regulation of the Minister of Culture and Art of March 6, 1997).

6. Prevent cases of plagiarism

Readers should be sure that the authors present the results of their work transparently, fair and honest, regardless of whether they are the direct authors, or used the help of a specialized entity (natural or legal person). To prevent cases of plagiarism, "ghostwriting" and "guest Authorship", the Editorial Office will require that the Authors disclosed the contribution of individual Authors in the creation of manuscript (with their affiliations and contributions, i.e. the information who is responsible for: research concept and design, collection and/or assembly of data, data analysis and interpretation, writing the manuscript). Funding sources (together with grant number) must also be revealed. The corresponding Author will bear the main responsibility for the manuscript. Detected cases will be exposed, including notifying the appropriate entities (institutions employing the Authors, scientific societies, associations of editors of scientific journals, etc.).

7. License type

Articles are printed in an open access and distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/).

This license allows authors to copy and redistribute the material in any medium or format, remix, transform, and build upon the material. Authors may not use the material for commercial purposes. However, this condition does not include dependent works (they may be covered by another license).

Submission of an article to the journal is unequivocal to expressing consent to the publication in both paper and electronic form.

This page uses 'cookies'. Learn more