Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2015 | vol. 62 | No 3 |

Abstract

The paper presents the solutions, calculation results and dynamic observations of three-layers, annular plate with thick core subjected to increasing in time load. The presented solutions use approximate methods: orthogonalization method and finite difference method in analytical and numerical solution of the problem, and finite element method. The observed phenomenon of the reduction of critical load values of the plates, in which the buckling mode is not global and there are different additional deflections of respective plate layers was comprehensively analysed in order to evaluate the critical state and supercritical plate behaviour. The critical deformation could have a form with strong deformation in the region of the loaded plate edge. The observation of the dynamic behaviour of plates, which buckling modes have circumferential waves is an important element of the analysis. Presented in this work the analytical and numerical solution to the problem of dynamic plate deflection was generalized on the case of plates with buckling waves in circumferential direction.

Go to article

Abstract

The article presents an approach to assessing human physical models specified in the ISO 10068:2012 standard. The models were compared on the basis of energy analysis, which was conducted in terms of power distribution. Since the models in question have a fully specified internal structure, the investigation focused on power distribution in the models and the total power in the system. The article provides a description of the construction and energy-based modelling of Human-Tool systems. Simulation results obtained during the study were analysed in terms of health risks posed to the tool operator.

Go to article

Abstract

This paper presents a development of a model of a set of multistage centrifugal electro pumps including two 4 stage stainless steel centrifugal pumps, each coupled to a 4 kW three-phase induction motor, connected to a hydraulic application running under two control strategies including constant speed and variable speed methods. Each pump provides 16 m3/hr flow rate and 58mwaterhead at BEP (Best Efficiency Point). Dynamicity of the model causes variations in all operational parameters of pumping system in any variation on consuming flow rate. Each electro pump has been driven with a variable frequency drive utilizing frequency control method for adjusting the rotational speed under a PID control regarding to match of pumping system operational point with the consumption point to save the energy. 83% energy saving is achieved by model in variable speed control strategy comparing to constant speed control strategy. MATLAB/SIMULINK software using ode45 solver and variable step size simulates this model.

Go to article

Abstract

A finite element (FE) model of the straight guideway bridge under monorail train has been built in this research in order to investigate dynamic interactions of the coupled system in the vertical and longitudinal direction. A limited length of the straddle monorail bridge including five continuous spans is modeled in three dimensions by using FE method. A 3D model of the monorail train system, built in the multibody analyzer MSC ADAMS, is assembled over the bridge. The entire model, consisting of the vehicle and bridge subsystems, is numerically analyzed by performing dynamic simulation in time domain. The braking forces between the train tires and guideway beams are activated in the analysis, in addition to the dead weights of the components and the train live loads. Dynamic forces in the tires are obtained for the case of the emergency braking in the system. The reaction forces, appeared in the bridge piers, are reported as the input forces for the purpose of the bridge design.

Go to article

Abstract

The process of designing control systems for devices operating in microgravity, on-orbit environment, requires testing to verify the effectiveness and characteristics of the algorithms. The key issue is to design a relevant environment in terrestrial conditions that affects both the linear and angular three-dimensional motion of a rigid body. This paper contains a description of the mechanical aspects of two test beds used to evaluate control algorithms planned for use in a space manipulator. Two solutions are presented: (i) a planar manipulator with a free base placed on an air-bearing table; and (ii) a test bed with a 7-DOF manipulator fixed through a force-torque measurement system to the base.

Go to article

Abstract

This paper presents a design of a tracked in-pipe inspection mobile robot with an adaptive drive positioning system. The robot is intended to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically. The paper covers a design process of a virtual prototype, focusing on track adaptation to work environment. A mathematical description of a kinematic model of the robot is presented. Operation of the prototype in pipes with a cross-section greater than 210 mm is described. Laboratory tests that validate the design and enable determination of energy consumption of the robot are presented.

Go to article

Editorial office

Editor-in-Chief

Prof. Marek Wojtyra, Warsaw University of Technology, Poland

 

Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Tadeusz Ryszard Fodemski, Technical University of Lodz, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany

 

Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland

 

Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland

 

Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland

  

Contact

ARCHIVE OF MECHANICAL ENGINEERING

Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,

E-mail: ame.eo@meil.pw.edu.pl

https://www.editorialsystem.com/ame

www.journals.pan.pl/ame

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

This page uses 'cookies'. Learn more