Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2010 | vol. 57 | No 2 |

Abstract

This paper presents a methodology for contact detection between convex quadric surfaces using its implicit equations. With some small modifications in the equations, one can model superellipsoids, superhyperboloids of one or two sheets and supertoroids. This methodology is to be implemented on a multibody dynamics code, in order to simulate the interpenetration between mechanical systems, particularly, the simulation of collisions with motor vehicles and other road users, such as cars, motorcycles and pedestrians.

The contact detection of two bodies is formulated as a convex nonlinear constrained optimization problem that is solved using two methods, an Interior Point method (IP) and a Sequential Quadratic Programming method (SQP), coded in MATLAB and FORTRAN environment, respectively. The objective function to be minimized is the distance between both surfaces. The design constraints are the implicit superquadrics surfaces equations and operations between its normal vectors and the distance itself. The contact points or the points that minimize the distance between the surfaces are the design variables. Computational efficiency can be improved by using Bounding Volumes in contact detection pre-steps. First one approximate the geometry using spheres, and then Oriented Bounding Boxes (OBB).

Results show that the optimization technique suits for the accurate contact detection between objects modelled by implicit superquadric equations.

Go to article

Abstract

The purpose of the present research relates to the sensitivity analysis of road vehicle comfort and handling performances with respect to suspension technological parameters. The envisaged suspension being of semi-active nature, this implies first to consider an hybrid modeling approach consisting of a 3D multibody model of the full car - an Audi A6 in our case - coupled with the electro-hydraulic model of the suspension dampers. Concerning parameter sensitivitie, the goal is to capture them for themselves - and not necessarily for optimization purpose - because their knowledge is of a great interest for the damper manufacturer.

An important issue of the research is to consider objective functions which are based on complete time integrations along a given trajectory, the goal being - for instance - to quantify the sensitivity of the carbody rms acceleration (comfort) or of the vehicle overturning character (handling) with respect to suspension parameters. On one hand, the accuracy of the various partial derivatives computation can be greatly enhanced thanks to the symbolic capabilities of our ROBOTRAN multibody program. On the other hand, the computational efficiency of the process also takes advantage of the recursive formulation of the multibody equations of motion which must be time integrated with respect to both the generalized coordinates and their partial derivatives in case of the so-called direct method underlying sensitivity analysis.

Go to article

Abstract

Dual quaternions and dual quaternion interpolation are powerful mathematical tools for the spatial analysis of rigid body motions. In this paper, after a review of some basic results and formulas, it will be presented an attempt to use these tools for the the kinematic modeling of human joints. In particular, the kinematic parameters extracted from experimentally acquired data are compared with those theoretically computed from dual quaternions rigid body motion interpolation.

Go to article

Abstract

The paper presents optimization of 5-rod (5-link) suspension mechanism used in passenger cars for independent guiding of the wheels. Selected stiffness coefficients defined for five elastomeric bushings installed in joints of the suspension rods are considered as design variables. Two models with lumped parameters (i.e. elastokinematic and dynamic) of wheel-suspension-car body system are formulated to describe relationships between the design variables and the performance indexes including car active safety and ride comfort, respectively. The multi-criteria goal function is minimized using a deterministic algorithm. The suspension with optimized bushings rates fulfils desired elastokinematic criteria together with a defined dynamic criterion, describing the so-called rolling comfort. An event of car passing over short road bump is considered as dynamic conditions. The numerical example deals with an actual middle-class passenger car with 5-rod suspension at the front driven axle. Estimation of the models parameters and their verification were carried out on the basis of indoor and outdoor experiments. The proposed optimization procedure can be used to improve the suspension design or development cycle.

Go to article

Abstract

The goal of the project is to investigate the influence of elastic mechanisms on technical, bipedal locomotion. In particular, the paper presents the parameter identification for a biologically inspired two-legged robot model. The simulation model consists of a rigid body model equipped with rubber straps. The arrangement of the rubber straps is based on the arrangement of certain muscle groups in a human being. The parameters of the elastic elements are identified applying numerical optimisation. Thus two optimisation algorithms are investigated and compared with respect to robustness and computing time. Moreover, different objective functions are defined and discussed. The behaviour of the resulting configuration of the system is explored in terms of biomechanics.

Go to article

Abstract

One of the applications of tether system is in the field of satellite technology, where the mother ship and satellite equipment are connected with a cable. In order to grasp the motion of this kind of tether system in detail, the tether can be effectively modeled as flexible body and dealt by multibody dynamic analysis. In the analysis and modeling of flexible body of tether, large deformation and large displacement must be considered. Multibody dynamic analysis such as Absolute Nodal Coordinate Formulation with an introduction of the effect of damping force formulation can be used to describe the motion behavior of a flexible body. In this study, a parameter identification technique via an experimental approach is proposed in order to verify the modeling method. An example of swing-up control using the genetic algorithm control approach is performed through simulation and experiment. The validity of the model and availability of motion control based on multibody dynamics analysis are shown by comparison between numerical simulation and experiment.

Go to article

Editorial office

Editor-in-Chief

Prof. Marek Wojtyra, Warsaw University of Technology, Poland

 

Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Tadeusz Ryszard Fodemski, Technical University of Lodz, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany

 

Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland

 

Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland

 

Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland

  

Contact

ARCHIVE OF MECHANICAL ENGINEERING

Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,

E-mail: ame.eo@meil.pw.edu.pl

https://www.editorialsystem.com/ame

www.journals.pan.pl/ame

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

This page uses 'cookies'. Learn more