Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2019 | vol. 19 | No 2 |

Abstract

The current casting production of castings brings increased demands for surface and internal quality of the castings. Important factors, that influence the quality of casted components, are the materials used for the manufacture of moulds and cores. For the preparation and production of moulds and cores, in order to achieve a low level of casting defects, then it used a high quality input materials, including various types of sands, modified binders, additives, etc. However, even the most expensive raw materials are not a guarantee to achieve the quality of production.

It is always necessary to choose the appropriate combination of input material together with an appropriate proposal for the way of the production, the metallurgical treatment of cast alloy, etc. The aim of this paper is to establish the basic principles for the selection of the base core mixtures components – sands to eliminate defects from the tension, specifically veining. Various silica sand, which are commonly used in foundries of Middle Europe region, were selected and tested.

Go to article

Abstract

The goal of this article is non-destructive ultrasonic testing of internal castings defects. Our task was to cast several samples with defects like porosity and cavities (where belongs mostly shrinkages) and then pass these samples under ultrasonic testing. The characteristics of ultrasonic control of castings are presented in the theoretical part of this article. Ultrasonic control is a volume non-destructive method that can detect internal defects in controlled materials without damaging the construction. It is one of the most widely used methods of volume non-destructive testing. For experimental control were made several cylindrical samples from ferritic grey and ductile cast iron. Because of the form and dispersion of graphite of grey cast iron it was not possible to make ultrasonic records on this casting with probe we used, so we worked only with ductile cast iron. Ultrasonic records of casting control are shown and described in the experimental part. The evaluation of the measurement results and the reliability of the ultrasonic method in castings control is listed at the end of this article.

Go to article

Abstract

This work presents the results of the research of the effect of the inoculant Emgesal Flux 5 on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in samples in the range from 0.1% to 0.6%. The thermal processes were examined with the use of Derivative and Thermal Analysis (DTA). During the examination, the DTA samplers were preheated up to 180 °C. A particular attention was paid to finding the optimum amount of inoculant, which would cause fragmentation of the microstructure. The concentration of each element was verified by means of a spark spectrometer. In addition, the microstructures of the samples were examined with the use of an optical microscope, and an image analysis with a statistical analysis using the NIS–Elements program were carried out. Those analyses aimed at examining the differences between the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is an introduction to a further research of grain refinement in magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the related changes of the chemical composition, which should improve the mechanical properties.

Go to article

Abstract

Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.

Go to article

Abstract

Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.

Go to article

Abstract

The paper presents the technology of manufacturing layered castings, consisting of grey cast iron (base part) and high-chromium stainless steel (working part/layer). The aim of researches was an attempt of integration of heat treatment of steel X46Cr13 grade with founding of grey cast iron in bimetallic system and determination of the influence of cooling rate of bimetallic system in classical sand mould with bentonite on microstructure and hardness of the working layer. The castings were manufactured using mould cavity preparation method, where steel plate was poured by grey cast iron using different pouring temperature and thickness of base part. Then, the quality of joint between cast iron and steel plate was estimated by using ultrasonic non-destructive testing. The efficiency of heat treatment process was analysed by measurement of hardness and in metallographic examination. Conducted studies showed, that self-hardening’s ability of steel X46Cr13 let obtain technologically usable layered casting characterized by hardness of working surface up to 35 HRC.

Go to article

Abstract

In this work, an assessment and comparison of the quality of selected bentonites and bentonite mixtures was made. The samples consisted of available foundry materials used for bonding green sands. Determining the homogeneity degree and specific surface area of the grains allowed us to compare the examined materials and determine their influence on other parameters. On the basis of a thermal analysis of the bentonites or bentonite mixtures, the changes occurring in the sample during its heating were determined. Determining the potential for ion exchange and montmorillonite content enabled us to assess the binding properties of the materials. The preparation of six green sands with different bentonites or bentonite mixtures gave us the opportunity to assess the changes in apparent density, permeability, compressive strength and friability as a function of humidity, and the impact of different materials on the mentioned parameters. Their charts were analyzed, and the molding sand with the addition of bentonite or a bentonite mixture was selected for which these parameters are favorable. On this basis, the best-presented binding material was assessed and selected.

Go to article

Abstract

Gas atmosphere at the sand mould/cast alloy interface determines the quality of the casting obtained. Therefore the aim of this study was to measure and evaluate the gas forming tendency of selected moulding sands with alkyd resins. During direct and indirect gas measurements, the kinetics of gas evolution was recorded as a function of the temperature of the sand mixture undergoing the process of thermal destruction. The content of hydrogen and oxygen was continuously monitored to establish the type of the atmosphere created by the evolved gases (oxidizing/reducing). The existing research methodology [1, 7, 8] has been extended to include pressure-assisted technique of indirect measurement of the gas evolution rate. For this part of the studies, a new concept of the measurement was designed and tested.

This article presents the results of measurements and compares gas emissions from two sand mixtures containing alkyd resins known under the trade name SL and SL2002, in which the polymerization process is initiated with isocyanate. Studies of the gas forming tendency were carried out by three methods on three test stands to record the gas evolution kinetics and evaluate the risk of gas formation in a moulding or core sand.

Proprietary methods for indirect evaluation of the gas forming tendency have demonstrated a number of beneficial aspects, mainly due to the ability to record the quantity and composition of the evolved gases in real time and under stable and reproducible measurement conditions. Direct measurement of gas evolution rate from the tested sands during cast iron pouring process enables a comparison of the results with the results obtained by indirect methods.

Go to article

Abstract

The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL® W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL® W sand mixture is 1.9 cm3/g. The measured volume of gas for GEOPOL® W is 4.3 cm3/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL® W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.

Go to article

Abstract

The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.

Go to article

Abstract

This article focuses on the study of the influence of remelting and subsequent natural and artificial ageing on the structure of recycled AlSi9Cu3 alloy with increased iron content. The assessed changes in eutectic silicon and iron-based intermetallic phases were carried out using optical and scanning electron microscopy. The degradation of the eutectic silicon morphology due to remelting occurred only at the highest numbers of remelting. The effect of remelting the investigated alloy, which is accompanied by a gradual increase in wt. % Fe, began to manifest significantly through a change in the length of the ferric phases after the fourth remelting. As expected, the artificial ageing process has proven to be more effective than natural ageing. It has led to a change in the eutectic silicon morphology and has been beneficial in reducing the lengths of adverse ferric phases. The use of alloys with higher numbers of remelting, or with greater “contamination”, for the manufacture of shape-challenging castings is possible when using a suitable method of eliminating the negative factors of the remelting process. The results of our investigation show a suitable method of the above elimination the application of heat treatment T5 – via artificial ageing.

Go to article

Abstract

The role of slag in the process of continuous casting of steel (CCS) is reduced to the thermal and chemical insulation of the liquid steel surface, and additionally to refining. The ability to adsorb non-metallic inclusions flowing off from the crystallizer, mainly Al2O3, determines its physicochemical properties. As a result of adsorption and dissolution of inclusions tin he liquid layer the viscosity and thickness of mould flux change, which eventually affects the technological parameters and behavior of slag in the crystallizer. The influence of aluminum oxide on the viscosity of slag was empirically investigated with a structural viscosity model worked out by Nakamoto. The results of the simulation are presented in the form of plots. Authors observed a significant influence of Al2O3 on the slag viscosity, which suggests that this effect should be taken into account when selecting chemical composition of mould flux for definite types of steel. The results of calculations also show that the disturbances in casting caused by the use of the mould slag may be connected with the content of non-metallic inclusions in steel.

Go to article

Abstract

The article describes the detection of a defect in a cast iron casting. It analyzes the cause of the crack in the Turbine Component casting. In this article, we are focusing on a particular turbine casting that is commonly used in automobiles as one of the components for turbochargers. The turbine is a casting made of ductile cast iron with a visible crack on the naked eye. The formation of cracks in castings is a common but undesirable phenomenon in the foundry practice. It is important to identify the errors, but also to know the cause of defects in castings. The solution is a detailed error analysis. In this paper I used metallographic analysis and magnetic powder method. The crack formation is due to tension in the casting, which results in tensile, shear, or shear forces. The crack formation kinetics is difficult because it is still very low during hardening and shortly after the casting is overloaded. The crack is most often due to core resistance or shrinkage molds that begin after the surface layer is tightened when the strength of the material is negligible to the end of the crystallisation.

Go to article

Abstract

By the method of modern physical material science (optic microscopy scanning and transmission electron microscopy) the analysis of structural phase states, the morphology of the second phase inclusions and defect substructure of Al-Si alloy (silumin) of hypoeutectic composition, subjected to electron beam processing was done with the following parameters: energy density 25-35 J/cm2, beam length 150 μs, pulse number – 3, pulse repetition rate – 0.3 Hz, pressure of residual gas (argon) 0.02 Pa. The surface irradiation results in the melting of the surface layer, the dissolution of boundary inclusions, the stricture formation of high speed cellular crystallization of submicron sizes, the repeated precipitation of the second phase nanodimentional particles. With the increased distance from the irradiation surface the layer containing the second phase inclusions of quasi-equilibrium shape along with the crystallization cells was revealed. It is indicative of the processes of Al-Si alloy structure globalization on electron beam processing.

Go to article

Abstract

The paper is concerned with comparing the methods for determining the ferrite content in castings from duplex stainless steels. It uses Schaeffler diagram, empirical formula based calculation, image analysis of metallographic sample, X-ray diffraction and measurement with a feritscope. The influence of wall thickness of the casting on the ferrite content was tested too. The results of the experiments show that the casting thickness of 25 or 60 mm does not have a significant effect on the measured amount of ferrite. The image analysis of metallographic sample and the measurement with the feritscope appear to be the most suitable methods. On the contrary, predictive methods, such as Schaeffler diagram or empirical formula based calculation are only indicative and cannot replace the real measurements. X-ray diffraction seems to be the least suitable measuring method. Values of ferrite content measured in such a way often deviated from the values measured by image analysis and with feritscope.

Go to article

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Abstract

The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.

Go to article

Abstract

Precision casting is currently motivated by high demand especially for castings for the aerospace, automotive and gas turbine industries. High demands on precision of this parts pressure foundries to search for the new tools which can help them to improve the production. One of these tools is the numerical simulation of injection process, whereas such software especially for investment casting wax injection, process does not exist yet and for this case must be the existing software, for alloys or plastic, modified. This paper focuses on the use of numerical simulations to predict the behavior of injected models of gas turbine blades segments. The properties of wax mixtures, which were imported into the Cadmould simulation software as a material model, were found. The results of the simulations were verified using the results of 3D scanning measurements of wax models. As a supporting technology for verifying the results was used the Infrared Thermography.

Go to article

Abstract

Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.

Go to article

Abstract

The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 μ).

Go to article

Editorial office

CHIEF EDITORS
Editor
J. Szajnar
Deputy Editor
J. Jezierski

SUBJECT EDITORS
Theoretical Aspects of Casting Processes
K. Eigenfeld – Freiberg, Germany
E. Guzik – Kraków, Poland
T. G. Mathia - Lyon, France
W. Wołczyński – Kraków, Poland
Innovative Foundry Technologies and Materials
T. Elbel – Ostrava, Czech Republic
Z. Ignaszak – Poznań, Poland
O. P. Pandey – Punjab, India
A. Pereira - Vigo, Spain
Foundry Processes Computer Aiding
B. Mochnacki – Częstochowa, Poland
J. Roučka – Brno, Czech Republic
J.S. Suchy – Kraków, Poland
Mechanization, Automation and Robotics in Foundry
J. Bast – Freiberg, Germany
R. Wrona – Kraków, Poland
Transport Systems in Foundry
J. Dańko – Kraków, Poland
Z. Li – Shijiazhuang, China
Castings Quality Management
D. Bolibruchova– Żilina, Slovak Republic
J. D. B. de Mello - Santa Monica, Brazil
M. Perzyk – Warszawa, Poland
Environment Protection
M. Holtzer – Kraków, Poland
H. Polzin – Freiberg, Germany
J. Sobczak – Kraków, Poland
I. Volchok – Zaporizhzhya, Ukraine

EDITORIAL ADVISORY BOARD
J. Braszczyński – Częstochowa, Poland
B. K. Dhindaw – Rupnagar, India
L. A. Dobrzański – Gliwice, Poland
W. A. Hufenbach – Dresden, Germany
P. Jelínek – Ostrava, Czech Republic
L. Jeziorski – Częstochowa, Poland
J. Lacaze – Toulouse, France
V. L. Naydek – Kiev, Ukraine
A. Passerone – Genova, Italy
I. Riposan – Bucharest, Romania
F. Romankiewicz – Zielona Góra, Poland
A. Sládek – Żilina, Slovak Republic

INTERNATIONAL SCIENTIFIC REVIEW COMMITTEE
S. A. Argyropoulos – Toronto, Canada
M. Azadi – Tehran, Iran
Y. Babaskin – Kiev, Ukraine
K. Bako – Miskolc, Hungary
E. Bayraktar – Paris, France
L. Bechný – Zilina, Slovak Republic
V. Bednarova - Ostrava, Czech Republic
F. Bińczyk – Katowice, Poland
A. Bokota – Częstochowa, Poland
G.P. Borisov – Kiev, Ukraine
A. Bydałek – Kraków, Poland
C. H. Cáceres – Brisbane, Australia
J. Čech – Brno, Czech Republic
L. Q. Chen – Shenyang, China
A. Chojecki – Kraków, Poland
M. Cholewa – Gliwice, Poland
I. A. Dibrov – Moscow, Russia
D. Dispinar – Istanbul, Turkey
S. M. Dobosz – Kraków, Poland
V. I. Dubodelov – Kiev, Ukraine
A. Fedoryszyn – Krakow, Poland
J. Głownia – Kraków, Poland
K. Granat – Wrocław, Poland
J. Hampl – Ostrava, Czech Republic
J. Helber – Düsseldorf, Germany
M. Hetmańczyk – Katowice, Poland
M. Horáček – Brno, Czech Republic
M. Kaczorowski – Warszawa, Poland
W. Kapturkiewicz – Kraków, Poland
R. Kawalla – Freiberg, Germany
Z. Konopka – Czestochowa, Poland
D. Kopyciński – Kraków, Poland
W. K. Krajewski – Kraków, Poland
Z. Libo – Beijing, China
P. Lichy – Ostrava, Czech Republic
Y. P. Lim – Setapak, Malaysia
T. Lipiński – Olsztyn, Poland
E. Majchrzak – Gliwice, Poland
A. Mityayev - Zaporizhzhya, Ukraine
M. Murgaš – Trnava, Slovak Republic
I. Nová – Liberec, Czech Republic
W. Orłowicz – Rzeszów, Poland
T. Pacyniak – Łódź, Poland
B. Piekarski – Szczecin, Poland
A. Rimmer – West Bromwich, United Kingdom
S. Samavedam – Hyderabad, India
P. Schumacher – Leoben, Austria
N. Sczygiol – Częstochowa, Poland
P. Skočovský – Żilina, Slovak Republic
M.S. Soiński – Częstochowa, Poland
J. Sokolowski – Ottawa, Kanada
K. V. Sudhakar – Butte, USA
B. G. Thomas - Champaign, USA
M. Trbižan – Ljubljana, Slovenia
J. Vuorinen – Tampere, Finland
E. Ziółkowski – Kraków, Poland
J. Zych – Kraków, Poland

ASSOCIATE EDITORS
D. Bartocha – Gliwice, Poland, - editorial secretary
J. Suchoń – Gliwice, Poland - editorial secretary
J. Szymszal – Katowice, Poland, Statistic Editor
A. Dulska – Gliwice, Poland
M. Kondracki – Gliwice, Poland
C. Borek –Chicago, USA, Language Editor

 

Contact

ul. Towarowa 7,
44-100 Gliwice, Poland
e-mail: kikm@polsl.pl

This page uses 'cookies'. Learn more