Archives of Environmental Protection is the oldest Polish scientific journal of international scope that publishes articles on engineering and environmental protection. The quarterly has been published by the Institute of Environmental Engineering, Polish Academy of Sciences since 1975. The journal has served as a forum for the exchange of views and ideas among scientists. It has become part of scientific life in Poland and abroad. The quarterly publishes the results of research and scientific inquiries by best specialists hereby becoming an important pillar of science. The journal facilitates better understanding of environmental risks to humans and ecosystems and it also shows the methods for their analysis as well as trends in the search of effective solutions to minimize these risks. The journal is indexed by Thomson Reuters services (Biological Abstract, BIOSIS Previews) and has an Impact Factor 2017 of 1.120
According to the general classification of shallow eutrophic lakes, two alternative types are distinguished: phytoplankton-dominated and macrophyte-dominated lakes. The latter type is rare and currently endangered by human activity. In order to determine the effect of reduced inflow of surface water by an earth dyke on the lake trophic state, certain biological and physico-chemical parameters were evaluated. This work focuses on two lakes of similar morphometric characteristics situated in the agricultural landscape. The effect of the earth dyke on the trophic state was positively verified. The lake situated in the catchment basin, in which the inflow of surface water was reduced, was defined as meso-eutrophic, with a small amount of phytoplankton and high water transparency. The reference lake was highly eutrophic, with low water transparency and a large amount of phytoplankton. The water body surrounded by the earth dyke was macrophytes dominated (65% of the lake area), whereas the reference lake was a phytoplankton-macrophyte type (42% of the lake area). The trophic evaluation of a lake can be underestimated because of a significant amount of biogenic compounds accumulated in plant tissues. Thus, the values of Carlson’s indices in macrophyte-dominated lakes may not account for the total amount of nutrients in the water body.
The surface properties of particles emitted from six selected coal-fired power and heating plants in Poland have been studied in this work for the first time. Samples were collected beyond the control systems. Surface composition of the size-distributed particles was obtained by photoelectron spectroscopy (XPS).
The reflection of the smallest, submicron particles was also measured to calculate their specific/mass absorption. The surface layer of the emitted particles was clearly dominated by oxygen, followed by silicon and carbon. The sum of the relative concentration of these elements was between 85.1% and 91.1% for coarse particles and 71.8–93.4% for fine/submicron particles. Aluminum was typically the fourth or fifth, or at least the sixth most common element. The mass absorption of the submicron particles emitted from the studied plants ranged from 0.02 m2g-1 to 0.03 m2g-1. Only specific absorption obtained for the “Nowy Wirek” heating plant was significantly higher than in other studied plants probably because the obsolete fire grate is used in this heating plant.
The obtained results suggest that the power/heating-plant-emitted fine particles contain less carbonaceous material/elemental carbon on their surfaces than those that are typical in urban air.
The aim of the study was to develop an effective treatment of post-digestion liquors highly-loaded with biogenic and organic substances. The scope of the research project encompassed: mesophilic anaerobic digestion of waste activated sludge (WAS) as well as the treatment of post-digestion liquors, coming from the most appropriate HRT value of 25 days, in the process of ammonium magnesium phosphate (struvite) precipitation targeted at ammonia nitrogen binding and a subsequent reverse osmosis (RO) process. It was established that the method combining chemical precipitation and high-pressure filtration ensures a high degree of contaminants removal allowing for a direct release of treated liquors into the natural reservoir. However, in order to decrease the residual NH4+ concentration (6.1 mg NH4+/dm3) in the purified post-digestion liquors below the level allowing for a direct release to the natural reservoir, it turned out to be necessary to apply increased molar ratio of magnesium and phosphates (Mg:NH4+: PO43-= 1.5:1:1.5).
The aim of this work was to identify concentration levels of different chemical forms of mercury (TGM, TPM) in the ambient air in selected areas of the Silesian Region, characterized by low and high mercury emission. Based on the obtained data TGM and TPM concentration levels were determined. The project also focused on determination of dry and wet deposition of mercury compounds. Data concerning TGM and TPM flux rates in the ambient air and data on mercury deposition were used to determine a deposition coefficient. The coefficient was calculated as a share of mercury deposition on the land surface (dry and wet) to the amount of this contaminant transported with loads of air in the form of TGM and TPM in a given measurement station. At both monitoring stations the deposition coefficient did not exceed 0.2 %. The idea of calculating the deposition coefficient based on the analysis of TGM and TPM flux rate is a new solution. The proposed deposition coefficient allows to quantify information on a selected contaminant concentration and its potential impact resulting from deposition. Further studies on the deposition coefficient may contribute to the development of methods for estimating the impact of contaminants contained in the ambient air on other environmental components based on the analyses of the contaminant flux rate.
The paper addresses the effect of a compost prepared from tobacco wastes with an admixture of bark and straw on the enzymatic activity and certain chemical properties of a grey-brown podzolic soil amended with that compost.
The study was conducted under the conditions of a pot experiment in which the soil material was collected from the surface horizon of the grey-brown podzolic soil. The effect of the application of the compost was compared with soil without such amendment. The test plant was maize cv. Kosmo 230. Fertilisation of the light soil with the compost studied caused changes in the enzymatic activity of the soil that were related both to the dose of the compost and to the kind of enzyme studied. With increase in the dose of the compost there was an increase in dehydrogenase activity (highest dose) and a significant decrease in the activity of acid phosphatase. Moreover, it was observed that tobacco compost was a significant source that enriched the light soil in organic matter, total nitrogen, and available forms of phosphorus, magnesium and potassium, which was evident in increased yields of maize grown as the test plant.
Significant correlations were also demonstrated between a majority of the biochemical and chemical parameters, which indicates that those parameters characterise well the biological properties of a grey-brown podzolic soil amended with tobacco compost.
Runoff estimation is a key component in various hydrological considerations. Estimation of storm runoff is especially important for the effective design of hydraulic and road structures, for the flood flow management, as well as for the analysis of land use changes, i.e. urbanization or low impact development of urban areas. The curve number (CN) method, developed by Soil Conservation Service (SCS) of the U.S. Department of Agriculture for predicting the flood runoff depth from ungauged catchments, has been in continuous use for ca. 60 years. This method has not been extensively tested in Poland, especially in small urban catchments, because of lack of data. In this study, 39 rainfall-runoff events, collected during four years (2009–2012) in a small (A=28.7 km2), urban catchment of Służew Creek in southwest part of Warsaw were used, with the aim of determining the CNs and to check its applicability to ungauged urban areas. The parameters CN, estimated empirically, vary from 65.1 to 95.0, decreasing with rainfall size and, when sorted rainfall and runoff separately, reaching the value from 67 to 74 for large rainfall events.
SI engines are highly susceptible to excess emissions when started at low ambient temperatures. This phenomenon has multiple air quality and climate forcing implications. Direct injection petrol engines feature a markedly different fuelling strategy, and so their emissions behaviour is somewhat different from indirect injection petrol engines. The excess emissions of direct injection engines at low ambient temperatures should also differ. Additionally, the direct injection fuel delivery process leads to the formation of PM, and DISI engines should show greater PM emissions at low ambient temperatures. This study reports on laboratory experiments quantifying excess emissions of gaseous and solid pollutants over a legislative driving cycle following cold start at a low ambient temperature for both engine types. Over the legislative cycle for testing at -7°C (the UDC), emissions of HC, CO, NOx and CO2 were higher when tested at -7°C than at 24°C. Massive increases in emissions of HC and CO were observed, together with more modest increases in NOx and CO2 emissions. Results from the entire driving cycle showed excess emissions in both phases (though they were much larger for the UDC). The DISI vehicle showed lower increases in fuel consumption than the port injected vehicles, but greater increases in emission of HC and CO. DISI particle number emissions increased by around 50%; DISI particle mass by over 600%. The observed emissions deteriorations varied somewhat by engine type and from vehicle to vehicle. Excesses were greatest following start-up, but persisted, even after several hundred seconds’ driving. The temperature of the intake air appeared to have a limited but significant effect on emissions after the engine has been running for some time. All vehicles tested here comfortably met the relevant EU limits, providing further evidence that these limits are no longer challenging and need updating.
According to data of the Central Statistical Office, the amount of sludge produced in municipal wastewater treatment plants in 2010 amounted to 526000 Mg d.m. The forecast of municipal sewage sludge amount in 2015 according to KPGO2014 will reach 642400 Mg d.m. and is expected to increase in subsequent years. Significant amounts of sludge will create problems due to its utilization. In order to solve this problem the use of thermal methods for sludge utilization is expected. According to the National Waste Management Plan nearly 30% of sewage sludge mass should be thermally utilized by 2022. The article presents the results of co-combustion of coal and municipal sewage sludge in a bubbling fluidized bed boiler made by SEFAKO and located in the Municipal Heating Company in Morag. Four tests of hard coal and sewage sludge co-combustion have been conducted. Boiler performance, emissions and ash quality were investigated.
The aim of the study was to determine the toxicity of the extract obtained from the cyanobacterial cells derived from the waters of Zemborzycki dam reservoir with use of a battery of biotests. The taxonomic identification of the bloom-forming cyanobacteria revealed high abundance of Aphanizomenon flos-aquae and Dolichospermum spp. (Anabaena spp.) and in a lower degree of Microcystis aeruginosa and Planktothrix agardhii. In the extract obtained from concentrated cyanobacterial cells, hepatotoxin microcystin-LR at a concentration of 22.89 ± 3.74 μg/L and neurotoxin Antx-a at 13.02 ± 0.01 μg/L have been detected. Toxicity of the extract was evaluated with the following assays: Daphtoxkit F magna with the crustacean Daphnia magna, Thamnotoxkit F with the crustacean Thamnocephalus platyurus, Rotoxkit F with the rotifer Brachionus calyciflorus and Protoxkit F with ciliate Tetrahymena thermophila. The most sensitive organism among all studied was T. platyurus for which EC50 was estimated to be 1.2% of the initial extract concentration. On the basis of the highest obtained value of the toxicity unit (TU = 83) the studied sample was classified to the IV class, which is of high acute toxicity. Additionally, it was found that reactivity on cyanobacterial products differs greatly among organisms used in bioassays, which indicate the need for using a set of biotests.
In order to investigate the mechanism of adsorption of reactive dyes from the textile industry on ash from heating plant produced by brown coal combustion, some characteristic sorption constants are determined using Langergren adsorption equations for pseudo-fi rst and pseudo-second order. Combined kinetic models of pseudo-first order and pseudo-second order can provide a simple but satisfactory explanation of the adsorption process for a reactive dye. According to the characteristic diagrams and results of adsorption kinetic parameters of reactive dyes on ashes, for the applied amounts of the adsorbents and different initial dye concentrations, it can be concluded that the rate of sorption is fully functionally described by second order adsorption model. According to the results, the rate constant of pseudo-second order decreases with increasing initial dye concentration and increases with increasing amount of adsorbent – ash.
Editors
Editor-in-Chief
Czesława
Rosik-Dulewska
Editorial Advisory Board
Michał
Bodzek
Katarzyna Juda-Rezler
Korneliusz Miksch
Assistant Editor
Jerzy
Szdzuj
Editorial Board:
President:
Lucjan
Pawłowski
Members:
Brian
A. Bolto (Australia)
Hubert Bril (France)
Bart Van der Bruggen
(Belgium)
Zhihong Cao (China)
Pen-Chi Chiang (R.O.C.)
Wolfgang
Frenzel (Germany)
Reinhard F. Hüttl (Germany)
Piotr Kowalik
(Poland)
Joanna Kyzioł-Komosińska (Poland)
Rajmund
Michalski (Poland)
Anuska Mosquera Corral (Spain)
Takashi Nakamura
(Japan)
Józef M. Pacyna (Norway)
Wim H. Rulkens (The
Nederlands)
Corrado Sarzanini (Italy)
Hans Martin Seip (Norway)
Jan
Siuta (Poland)
Jerzy Sobota (Poland)
Joanna Surmacz-Górska (Poland)
Jadwiga
Szczepańska (Poland)
Christopher G. Uchrin (USA)
Tomasz
Winnicki (Poland)
Xiaoping Zhu (USA)
Jerzy Zwoździak (Poland)
Institute of Environmental
Engineering of the Polish Academy of Sciences
ul. M.
Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Tel.: +48-32-271 64
81 Fax: +48-32-271 74 70
e-mail: aep@ipis.zabrze.pl
Instructions for Authors
Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.
Scope
The Journal principally accepts for publication original research papers covering such topics as:
- Air quality, air pollution prevention and treatment;
- Wastewater treatment and utilization;
- Waste management;
- Hydrology and water quality, water treatment;
- Soil protection and remediation;
- Transformations and transport of organic/inorganic pollutants in the environment;
- Measurement techniques used in environmental engineering and monitoring;
- Other topics directly related to environmental engineering and environment protection.
The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.
If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipis.zabrze.pl
Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferable using Time New Roman font with no less than 12 point. The text should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than one author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts - providing the name and publication year in brackets.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:
1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:
Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330.
2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:
Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Sudies, Zabrze 2019.
3. Edited book:
Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:
Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.
4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:
Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).
5. Patents:
Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.
6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:
Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330. (in Polish)
Not more than 30 references should be cited in the original research paper.
Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article. The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep. Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.
Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline. Reviewers receive a text of the article (without personal data of Authors) and review forms applicable in the journal. In justified cases, reviewers receive additional questions regarding the article. Review process usually lasts from 1 to 4 months.
After completion of the review process Authors are informed of the results and - if both reviews are positive - asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.
Acceptance of the manuscript
The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.
Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or - in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.
Article publication charges
The publication fee of an article in the Journal is:
• 20 EUR/80 zł per page (black and white or in gray scale),
• 30 EUR/120 zł per page (color).
Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW
Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.
Archives of Environmental Protection is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-SA 4.
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
AGRIS
Arianta
Baidu Scholar
BazTech
CABI (over 50 subsections)
Chemical Abstracts Service (CAS) - CAplus
Chemical Abstracts Service (CAS) - SciFinder
CNKI Scholar (China National Knowledge Infrastructure)
CNPIEC
Dimensions
DOAJ (Directory of Open Access Journals)
EBSCO (relevant databases)
EBSCO Discovery Service
Engineering Village
FSTA - Food Science & Technology Abstracts
Genamics JournalSeek
GeoArchive
GeoRef
Google Scholar
Index Copernicus
Inspec
Japan Science and Technology Agency (JST)
J-Gate
Journal Citation Reports/Science Edition
JournalTOCs
KESLI-NDSL (Korean National Discovery for Science Leaders)
Microsoft Academic
Naviga (Softweco)
Primo Central (ExLibris)
ProQuest (relevant databases)
Publons
ReadCube
Reaxys
SCOPUS
Sherpa/RoMEO
Summon (Serials Solutions/ProQuest)
TDNet
TEMA Technik und Management
Ulrich's Periodicals Directory/ulrichsweb
WanFang Data
Web of Science - Biological Abstracts
Web of Science - BIOSIS Previews
Web of Science - Science Citation Index Expanded
WorldCat (OCLC)