Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2020 | vol. 46 | No 1 |

Download PDF Download RIS Download Bibtex

Abstract

Ligninolytic enzymes are employed for the production of second-generation biofuel to minimize fuel crisis. Additionally, they play a crucial role in global carbon cycle and a variety of applications in food, agriculture, paper and textile industries. On a large scale production of ligninolytic enzymes, microorganisms can be cultured on lignocellulosic wastes. In the present study, proximate analysis including acid detergent lignin (ADL), acid detergent cellulose (ADC), acid detergent fi ber (ADF) and acid insoluble ash (AIA) were performed for Platanus orientalis (chinar), Bauhinia variegata (orchid tree), Pinus roxburghii (chir pine), wheat straw and wheat husk. Platanus orientalis was selected as substrate because of higher lignin contents for the production of ligninolytic enzymes by Aspergillus flavus. Solid State Fermentation was used and Response Surface Methodology was employed for optimizing various parameters and enzymes production. Maximum production was achieved at temperature 32°C, fermentation period 120 hours, pH 4.5, inoculums size 3.5 mL, substrate mesh size 80 mm, substrate size 7 g. Maximum purifi cation of laccase, manganese peroxidase (MnP) and lignin peroxidase (LiP) was achieved with 50%, 60% and 40% ammonium sulfate respectively and it was enhanced by gel filtration chromatography. Characterization of enzymes shows that Laccase has 35°C optimum temperature, 4.5 pH, 0.289 mM Km and 227.27 μM/ml Vmax. Manganese peroxidase has 30°C optimum temperature, 5.5 pH, 0.538 mM Km and 203.08 μM/ml Vmax. Lignin peroxidase has 30°C optimum temperature, 3 pH, 2 mM Km and 2000 µM/ml Vmax. Protein concentrations found in crude extracts and partially purified enzymes are respectively: laccase 1.78 and 0.71 mg/ml, MnP 1.59 and 0.68 mg/ml. LiP, 1.70 and 0.69 mg/ml.

Go to article

Authors and Affiliations

Jehangir Khan
Muahammad Javaid Asad
Raja Tahir Mahmood
Feeroza Hamid Wattoo
Tayyaba Zainab
Sidrah Nazir
Muhammad Basir Shah
Dawood Ahmed
Download PDF Download RIS Download Bibtex

Abstract

As polycarbonate is frequently used in many products, its accumulation in landfi lls is absolutely harmful to the environment. The aims of this study were the screening and isolation of polycarbonate-degrading bacteria (PDB) and the assessment of their ability in the degradation of polycarbonate (PC) polymers. Nine-month buried-PC films were used for PDB isolation and identification. The biodegradation ability of the isolates was determined by growth curve, clear zone formation, lipase and amylase production, AFM and FTIR. Bacillus cereus and Bacillus megaterium were identifi ed and considered as PDB. The degradation ability of B. megaterium was significantly higher than that of B. cereus. Both were lipase and amylase positive. AFM and FTIR results showed the initiation of bacterial attachment. The PC biodegradation ability of isolates can be very efficient. Finding such efficient isolates (which was less studied before) will promise a decrease in plastic contamination in the future.

Go to article

Authors and Affiliations

Mojgan Arefian
Arezoo Tahmourespour
Mohammadali Zia
Download PDF Download RIS Download Bibtex

Abstract

The study discusses an experimental method for treatment of high strength domestic sewage on biofilters filled with polyurethane (PUR) waste in the form of trims of upholstery foam. We determined effectiveness of two biological preparations containing effective microorganisms in elimination of organic and biogenic compounds, indicator bacteria and total suspended solids from the sewage pretreated in a septic tank. After four months of work under a hydraulic loading of 76.4 mm∙d-1 we found the filter with 60 cm foam layer to be the most efficient in the elimination of BOD5, CODCr, NH4+-N and coliform bacteria. An average reduction in these pollutants reached 79.4%, 67.8%, 58.0% and 88.0%, respectively. Vertical filters filled with trims of upholstery foam and supplied with effective microorganisms ensured favorable conditions for development of heterotrophic and nitrifying bacteria without any need for additional aeration.

Go to article

Authors and Affiliations

Chmielowski Krzysztof
Jan Pawełek
Ewa Dacewicz
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the potential of three microalgae taxonomic groups of Chlorophyta, Cyanoprokaryota and Bacillariophyceae for biogas production. Biogas potential was assessed in mesophilic anaerobic digestion batch tests over a period of 20 days. The cumulative biogas yield (CBY) of Chlorophyta and Cyanoprocaryota was respectively 396.21 mL/g Volatile Solids (VS) and 382.45 mL/g VS. Bacillariophyceae digestion showed lower biogas production of 357.07 mL/g VS. The highest cumulative methane yield (CMY) of 241.25 mL CH4/g VS was recorded for Cyanoprocaryota biomass, which was signifi cantly higher (p<0.05) than the other two types of microalgae. The highest methane content in biogas of 63.08% was observed with Cyanoprokaryota. Chemical composition of biomass as well as biogas productivity are infl uenced by algal taxonomy.

Go to article

Authors and Affiliations

Marta Kisielewska
Marcin Dębowski
Marcin Zieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents new non-ionic deep eutectic solvent (DES) composed of natural and non-toxic components i.e. guaiacol, camphor and levulinic acid in 1:1:3 molar ratio as a promising absorbent for removal of selected volatile organic compounds (VOCs) including dichloromethane, toluene, hexamethyldisiloxane and propionaldehyde from model biogas. The affi nity of DES for VOCs was determined as vapour-liquid coeffi cients and the results were compared with several well-known DESs based on quaternary ammonium salt as well as n-hexadecane and water. For new DES, the absorption process was carried out under dynamic conditions. The results indicate that non-ionic DES has high affi nity and capacity for VOCs being comparable to n-hexadecane. In addition, absorbed VOCs could be easily desorbed from DES using activated carbon and absorbent could be re-use minimum fi ve times without significant loss of absorption capacity.

Go to article

Authors and Affiliations

Słupek Edyta
Patrycja Makoś
Jacek Gębicki
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to evaluate the biochemical possibilities of converting waste lignocellulosic biomass to second generation bioethanol. Three substrates were used in the research: barley straw, rye straw and triticale straw. In the first stage of the research bacterial strains capable of converting waste biomass to produce sugars used to produce energy-useful ethanol were selected. Of the eight strains isolated the three with the highest potential were selected on the basis of activity index value. The raw materials were subjected to enzymatic hydrolysis using the simultaneous saccharifi cation and fermentation method (SSF process). Based on the conducted research, it was found that the examined waste biomass is suitable for the production of cellulosic bioethanol. As a result of distillation 10% and 15% (v/v) ethanol was obtained, depending on the strain and the type of raw material. It was demonstrated that the bacterial strain had a greater impact on the effectiveness of the process than the type of straw used.

Go to article

Authors and Affiliations

Małgorzata Hawrot-Paw
Adam Koniuszy
Grzegorz Zając
Joanna Szyszlak-Bargłowicz
Julia Jaklewicz
Download PDF Download RIS Download Bibtex

Abstract

The present study thoroughly evaluated the effect of hydroxypropyl-β-cyclodextrin (HP-β-CD) on eluting of Aroclor1242 (one kind of PCBs (polychlorinated biphenyls)) from contaminated soil. The factors that might affect eluting efficiency including HP-β-CD concentration, contact time, eluting cycles, temperature, pH, salt content, humic acid, and ultrasonic were all tested to evaluate the PCBs eluting efficiency by HP-β-CD. Results indicated that Aroclor1242 can be eluted effectively from soil by HP-β-CD solution, 81% of Aroclor1242 was eluted from soil by 50 g/L of HP-β-CD solution after three cycles eluting, and the eluting efficiency was improved by increasing temperature and with ultrasonic. Furthermore, it was shown that the humic acid and extreme acidic/alkaline condition both decreased the eluting efficiency. In addition, column eluting experiment was conducted to simulate the practical HP-β-CD eluting of Aroclor1242 from contaminated soil, 18% of the PCBs was eluted from the soil column by 10 g/L of HP-β-CD. Overall, the results indicated the high extract power of HP-β-CD toward PCBs polluted soil and potential use of HP-β-CD for in situ remediation of PCBs contaminated soils.

Go to article

Authors and Affiliations

Xun Liu
Ning Ding
Hong Liu Liu
Houwang Chen
Download PDF Download RIS Download Bibtex

Abstract

The presented work introduces a simple modification of coal fl y ash (FA) with 30% solution of H202, used as a new efficient sorbent for the removal of organic dye crystal violet (CV) in the presence of Cu(II) ions in single- and bi-component systems Cu(II)-CV. FT-IR, TG, SEM-EDS, and XRD suggested that the mechanism of Cu(II) and CV sorption onto FA-H2O2 includes ion-exchange and surface adsorption process. Comparing the values of the reduced chi-square test (χ2/DoF) and the determination coefficient R2 obtained for CV of the considered isotherms, the fitting degree follows the sequence: Jovanović > Langmuir > Elovich > Freundlich > Redlich-Peterson (R-P) > Tóth > Halsey > BET. Sorption of Cu(II) ions in a single system by means of FA-H2O2 was well fi tted by the Langmuir and R-P model. The studies of equilibrium in a bi-component system by means of extended Langmuir (EL), extended Langmuir-Freundlich (ELF), and Jain-Snoeyink (JS) models were analysed. The estimation of parameters of sorption isotherms in a bi-component system Cu(II)-CV has shown that the best of fi t calculated values of experimental data for both sorbates have been the EL model and the JS model, but only in the case of a CV dye. The sorption kinetic of Cu(II) and CV onto FA-H2O2 was discussed by means of the PFO, PSO, and intra-particle diff usion models.

Go to article

Authors and Affiliations

Eleonora Sočo
Dariusz Pająk
Jan Kalembkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Sugar beet molasses vinasse is a high-strength distillery wastewater. It contains colored substances which significantly affect the degree of pollution and toxicity of vinasse. This study aimed to optimize the medium composition and the process condition of sugar beet molasses vinasse decolorization by Lactobacillus plantarum MiLAB393. The research was conducted in two stages: the shake-fl ask stage in the 250 cm3 Erlenmeyer flasks and the batch experiments in the 5 dm3 working volume stirred-tank bioreactor. During the study, the concentrations of glucose and yeast extract were optimized using experimental design of experiments (DOE). The influences of the initial value of pH and pH control, temperature, stirrer speed and glucose concentration on decolorization were tested. The highest color reduction of 24.1% was achieved for an experiment in which 24.93 g/dm3 of glucose was added to the medium and stirrer speed was 200 rpm. This efficiency of 30% v/v sugar beet molasses vinasse decolorization was obtained at non-controlled pH 6.0 and at 35.8°C. It was found that pH control determines vinasse decolorization. When the pH was controlled, decolorization did not exceed 9%. The glucose and yeast extract concentration and the stirrer speed have a great influence on the process. Changes in these parameters may increase biomass growth while decreasing the decolorization.

Go to article

Authors and Affiliations

Marta Wilk
Małgorzata Krzywonos
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new concept of disinfection traditionally applied in water treatment systems. The new definition of this process results from the change in its functionality, aims and methods, which guarantee high quality of water supply. The literature review and technical practice demonstrate a demand for disinfection to act as a functional element of the integrated water distribution system and an active intermediate link between the technology of water treatment and the water distribution network. The presented concept of a disinfection process enables evaluation of water treatment, increases its effectiveness in integrated water treatment systems. Such defined disinfection addresses water conservation and its biological stability within the water supply network. The presented here new concept of disinfection assigns its new role and function in the integrated water distribution system. The controlling and diagnostic function of the disinfection defined in the paper provides a transparent and comprehensive method, with considerable application in experimental design, as well as practical solutions for integrated water distribution systems.

Go to article

Authors and Affiliations

Zbysław Dymaczewski
Joanna Jeż-Walkowiak
Michał Michałkiewicz
Marek M. Sozański
Aleksandra Makała
Download PDF Download RIS Download Bibtex

Abstract

High concentrations of nitrogen dioxide in the air, particularly in heavily urbanized areas, have an adverse eff ect on many aspects of residents’ health. A method is proposed for modelling daily average, minimal and maximal atmospheric NO2 concentrations in a conurbation, using two types of modelling: multiple linear regression (LR) an advanced data mining technique – Random Forest (RF). It was shown that Random Forest technique can be successfully applied to predict daily NO2 concentration based on data from 2015–2017 years and gives better fit than linear models. The best results were obtained for predicting daily average NO2 values with R2 =0.69 and RMSE=7.47 μg/m . The cost of receiving an explicit, interpretable function is a much worse fit (R2 from 0.32 to 0.57). Verification of models on independent material from the first half of 2018 showed the correctness of the models with the mean average percentage error equal to 16.5% for RF and 28% for LR modelling daily average concentration. The most important factors were wind conditions and traffic flow. In prediction of maximal daily concentration, air temperature and air humidity take on greater importance. Prevailing westerly and south-westerly winds in Wrocław effectively implement the idea of ventilating the city within the studied intersection. Summarizing: when modeling natural phenomena, a compromise should be sought between the accuracy of the model and its interpretability.

Go to article

Authors and Affiliations

Joanna Amelia Kamińska
Tomasz Turek
Download PDF Download RIS Download Bibtex

Abstract

In our article the ordinary kriging interpolation method was used for a spatial presentation of PM2.5 concentrations. The data used in the research was obtained from the unique PM2.5 measuring system, based on low-cost optical sensors for PM2.5 concentration measurements, working on Wroclaw University of Science and Technology campus area. The data from this system was used as an input for the interpolations that were made for three different days characterized by the highest measured values of PM2.5 – 20.01.2019, 17.02.2019 and 30.03.2019. For each of the selected days, variants with the maximum and minimum PM2.5 values recorded on a given measurement day were presented. In the analyses performed, the ordinary kriging technique and cross-validation, was used as the interpolation and the validation method, respectively. Parameters determining the quality of performed interpolation were Mean Error, Mean Standardized Error, Root Mean Square Error, and Average Standard Error. As the main indicator of quality of interpolation RMSE parameter was used. Analysis of that parameter shows that the higher variability of the data used for interpolation affects its quality. The Root Mean Square Error parameter reached 0.64, 0.94 and 1.71 for the lowest concentrations variants characterized by low spatial variability, and 6.53, 7.51, 11.28 for the highest one, which were characterized by high spatial variability. The obtained results of the research with the use of GIS tools shows that the ordinary kriging method allowed for the correct spatial presentation of the PM2.5 concentration variability in areas not covered by the measurement system.

Go to article

Authors and Affiliations

Izabela Sówka
Marek Badura
Marcin Pawnuk
Piotr Szymański
Piotr Batog

Editorial office

Editors

Editor-in-Chief
Czesława Rosik-Dulewska

Editorial Advisory Board
Michał Bodzek
Katarzyna Juda-Rezler
Korneliusz Miksch

Assistant Editor
 Jerzy Szdzuj

Editorial Board:

President:
Lucjan Pawłowski

Members:
Brian A. Bolto (Australia)
Hubert Bril (France)
Bart Van der Bruggen (Belgium)
Zhihong Cao (China)
Pen-Chi Chiang (R.O.C.)
Wolfgang Frenzel (Germany)
Reinhard F. Hüttl (Germany)
Piotr Kowalik (Poland)
Joanna Kyzioł-Komosińska (Poland)
Rajmund Michalski (Poland)
Anuska Mosquera Corral (Spain)
Takashi Nakamura (Japan)
Józef M. Pacyna (Norway)
Wim H. Rulkens (The Nederlands)
Corrado Sarzanini (Italy)
Hans Martin Seip (Norway)
Jan Siuta (Poland)
Jerzy Sobota (Poland)
Joanna Surmacz-Górska (Poland)
Jadwiga Szczepańska (Poland)
Christopher G. Uchrin (USA)
Tomasz Winnicki (Poland)
Xiaoping Zhu (USA)
Jerzy Zwoździak (Poland) 

Contact

Institute of Environmental Engineering of the Polish Academy of Sciences
ul. M. Skłodowskiej-Curie 34, 41-819 Zabrze, Poland
Tel.: +48-32-271 64 81      Fax: +48-32-271 74 70
e-mail: aep@ipis.zabrze.pl

Instructions for authors

Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope

The Journal principally accepts for publication original research papers covering such topics as:

- Air quality, air pollution prevention and treatment;

- Wastewater treatment and utilization;

- Waste management;

- Hydrology and water quality, water treatment;

- Soil protection and remediation;

- Transformations and transport of organic/inorganic pollutants in the environment;

- Measurement techniques used in environmental engineering and monitoring;

- Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipis.zabrze.pl

Preparation of the manuscript

The following are the requirements for manuscripts submitted for publication:

• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.

• The manuscript should be written in English.

• The manuscript ought to be submitted in doc or docx format in three files:

– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;

– figures.doc – file containing illustrations with legends;

– tables.doc – file containing tables with legends;

• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferable using Time New Roman font with no less than 12 point. The text should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.

• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.

• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.

• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than one author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts - providing the name and publication year in brackets.

• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:

Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.

For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330.

2. Book:

Surnames and initials. (publication year). Title, Publisher, Place and publishing year.

For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Sudies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.

For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:

Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).

For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.

Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:

Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.

For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98, DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.

Submission of the manuscript

By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article. The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep. Authors are asked to propose at least 4 potential reviewers, including 2 from Poland, together with their e-mail addresses. The journal does not have article processing charges (APCs) nor article submission charges.

Review Process

All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline. Reviewers receive a text of the article (without personal data of Authors) and review forms applicable in the journal. In justified cases, reviewers receive additional questions regarding the article. Review process usually lasts from 1 to 4 months.

After completion of the review process Authors are informed of the results and - if both reviews are positive - asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction

All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or - in extreme cases – to re-translate the text.

After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges

The publication fee of an article in the Journal is:

• 20 EUR/80 zł per page (black and white or in gray scale),

• 30 EUR/120 zł per page (color).

Payments in Polish zlotys

Bank BGK

Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros

Bank BGK

Account no.: 20 1130 1091 0003 9111 7820 0001

IBAN: PL 20 1130 1091 0003 9111 7820 0001

SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice.

Open Access policy

Archives of Environmental Protection jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-SA 4.0.

Archives of Environmental Protection is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-SA 4.

Additional information

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)

AGRIS

Arianta

Baidu Scholar

BazTech

CABI (over 50 subsections)

Chemical Abstracts Service (CAS) - CAplus

Chemical Abstracts Service (CAS) - SciFinder

CNKI Scholar (China National Knowledge Infrastructure)

CNPIEC

Dimensions

DOAJ (Directory of Open Access Journals)

EBSCO (relevant databases)

EBSCO Discovery Service

Engineering Village

FSTA - Food Science & Technology Abstracts

Genamics JournalSeek

GeoArchive

GeoRef

Google Scholar

Index Copernicus

Inspec

Japan Science and Technology Agency (JST)

J-Gate

Journal Citation Reports/Science Edition

JournalTOCs

KESLI-NDSL (Korean National Discovery for Science Leaders)

Microsoft Academic

Naviga (Softweco)

Primo Central (ExLibris)

ProQuest (relevant databases)

Publons

ReadCube

Reaxys

SCOPUS

Sherpa/RoMEO

Summon (Serials Solutions/ProQuest)

TDNet

TEMA Technik und Management

Ulrich's Periodicals Directory/ulrichsweb

WanFang Data

Web of Science - Biological Abstracts

Web of Science - BIOSIS Previews

Web of Science - Science Citation Index Expanded

WorldCat (OCLC)

This page uses 'cookies'. Learn more