Nauki Biologiczne i Rolnicze

Acta Biologica Cracoviensia s. Botanica


Acta Biologica Cracoviensia s. Botanica | 2015 | vol. 57 | No 2 |


Abstract Plant tissue culture techniques have become an integral part of progress in plant science research due to the opportunity offered for close study of detailed plant development with applications in food production through crop improvement, secondary metabolites production and conservation of species. Because the techniques involve growing plants under controlled conditions different from their natural outdoor environment, the plants need adjustments in physiology, anatomy and metabolism for successful in vitro propagation. Therefore, the protocol has to be optimized for a given species or genotype due to the variability in physiological and growth requirement. Developing the protocol is hampered by several physiological and developmental aberrations in the anatomy and physiology of the plantlets, attributed to in vitro culture conditions of high humidity, low light levels and hetero- or mixotrophic conditions. Some of the culture-induced anomalies become genetic, and the phenotype is inherited by clonal progenies while others are temporary and can be corrected at a later stage of protocol development through changes in anatomy, physiology and metabolism. The success of protocols relies on the transfer of plantlets to field conditions which has been achieved with many species through stages of acclimatization, while with others it remains a challenging task. This review discusses various adjustments in nutrition, physiology and anatomy of micro-propagated plants and field grown ones, as well as anomalies induced by the in vitro culture conditions.
Przejdź do artykułu

Autorzy i Afiliacje

Tasiu Isah


Abstract In vitro cultures of Anethum graveolens (dill) were maintained on the Linsmaier and Skoog (LS) medium – three variants, and the Murashige and Skoog (MS) medium – seven variants, which contained different amounts of plant growth regulators, cytokinin (BAP) and auxin (NAA) (from 0.1 mg l−1 to 3.0 mg l−1). Methanolic extracts from in vitro grown biomass were analyzed by HPLC for free phenolic acids and furanocoumarins. The total amounts of free phenolic acids on the LS medium variants were similar (35.23–38.65 mg 100 g−1 DW), but higher on the MS variants, ranging from about 66 mg 100 g−1 DW to 100 mg 100 g−1 DW. The main metabolites were: p-hydroxybenzoic acid (max. 24.41 mg 100 g−1 DW) on the LSbased media, and salicylic acid (max. 57.88 mg 100 g−1 DW) and p-hydroxybenzoic acid (max. 36.27 mg 100 g−1 DW) on the MSbased media. The total amounts of furanocoumarins were lower, as they did not exceed 8.5 mg 100 g−1 DW on the LS media and 25 mg 100 g−1 DW on the MS media. The main compounds in this group were bergapten (max. 15.01 mg 100 g−1 DW) and marmesin (max. 8.12 mg 100 g−1 DW). The MS variant containing 0.5 mg l−1 BAP and 2.0 mg l−1 NAA was proposed as the best production medium for both groups of metabolites. The maximum total amounts of free phenolic acids obtained in the in vitro grown biomass were slightly higher than their amounts in the fruits of the mother plant analyzed for comparison (99.66 mg 100 g−1 DW and 93.34 mg 100 g−1 DW, respectively); the maximum total amounts of furanocoumarins were approximately 1.8 times higher than in the fruits (24.26 mg 100 g−1 DW and 13.67 mg 100 g−1 DW, respectively).
Przejdź do artykułu

Autorzy i Afiliacje

Agnieszka Szopa
Halina Ekiert


Abstract NH4+ is an important N-source which regulates plant growth and development. However, the underlying mechanism of NH4+ uptake and its-mediated signaling is poorly understood. Here, we performed phosphoproteomic studies using the titanium dioxide (TiO2)-mediated phosphopeptides collection method together with LC-MS analysis. The results indicated that phosphorylation levels of 23 and 43 peptides/proteins involved in diverse aspects, including metabolism, transport and signaling pathway, were decreased and increased respectively after NH4+ treatment in rice roots. Among 23 proteins detected, IDD10, a key transcription factor in ammonium signaling, was identified to reduce phosphorylation level of S313 residue. Further biochemical analysis using IDD10-GFP transgenic plants and immunoprecipitation assay confirmed that NH4+ supply reduces IDD10 phosphorylation level. Phosphorylation of ammonium transporter 1;1 (AMT1;1) was increased upon NH4+ treatment. Interestingly, phosphorylation of T446, a rice specific residue against Arabidopsis was identified. It was also established that phosphorylation of T452 is conserved with T460 of Arabidopsis AMT1;1. Yeast complementation assay with transformation of phosphomimic forms of AMT1;1 (T446/D and T452/D) into 31019b strain revealed that phosphorylation at T446 and T452 residues abolished AMT1;1 activity, while their plasma membrane localization was not changed. Our analyses show that many proteins were phosphorylated or dephosphorylated by NH4+ that may provide important evidence for studying ammonium uptake and its mediated signaling by which rice growth and development are regulated.
Przejdź do artykułu

Autorzy i Afiliacje

Xiao Feng Zhu
Wan Hui Cai
Jin Hee Jung
Yuan Hu Xuan


Abstract There is increasing evidence showing that low selenium (Se) concentrations may increase tolerance of crop plants to several environmental stresses. The aim of this study was to compare the influence of two chemical forms of Se (selenite or selenate) at different concentrations (2 or 6 μM) on the resistance of butterhead lettuce (Lactuca sativa L. var. capitata) cv. Justyna to NaCl-induced stress (40 mM NaCl). Plant growth was negatively affected by salinity, but the level of photosynthetic pigments was not reduced. Se application at a concentration of 2 μM significantly improved the growth of salt-stressed plants, but selenite was much more effective than selenate in enhancing salt-tolerance of lettuce. The growth-promoting effect of Se was also noted at 6 μM of selenite, but did not appear at 6 μM of selenate. The beneficial effect of Se in salt-stressed lettuce could be due to antioxidative activity of Se, root system growth stimulation, and/or increase in photosynthetic pigment concentration after Se supplementation; however, it was not related to either increase in proline accumulation or reduction in foliar Na+ or Cl concentration. These results imply that Se application, especially in the form of selenite, can enhance antioxidant defense of lettuce under salt stress, and Se supplementation may be recommended for areas of lettuce cultivation with excessive salt accumulation.
Przejdź do artykułu

Autorzy i Afiliacje

Barbara Hawrylak-Nowak


Abstract The aim of this paper is to elucidate relationship between anatomical changes and lignin deposition dynamics in the cell wall of barley (Hordeum vulgare L.) internodes during four growth stages: heading, flowering, grain filling and ripening. Microscopy was used to analyze anatomical changes related to lignin deposition whereas peroxidase activity was spectrophotometrically determined. In transversal sections lignin was found to be predominant in the sclerenchyma ring in cortex, where particularly lignified cell walls were found. Peroxidase activity was increased in older internodes and their localization in situ was in positive correlation with tissue lignification. Our results showed that, depending on the cultivar, at the flowering and grain filling stages intensive lignin synthesis and deposition occurred. This showed that deposition of lignin in the cell wall at a particular growth stage is in correlation with the lodging resistant phenotype of the investigated cultivars. The results contribute to the understanding of the lignin deposition process during barley development and consequential cell wall thickness.
Przejdź do artykułu

Autorzy i Afiliacje

Lidija Begović
Jelena Ravlić
Hrvoje Lepeduš
Dunja Leljak-Levanić
Vera Cesar


Abstract The efficiency of phytoremediation might be highly affected by plant-associated microorganisms, and understanding of the underlying mechanisms is still a great challenge. The primary aim of this study was to evaluate the efficiency parameters for Cd2+ accumulation in the biomass of willow (Salix viminalis) as well as to define the biochemical response of the host plant when it is inoculated with selected bacterial strains (Massilia sp. and Pseudomonas sp.) or saprophytic fungus (Clitocybe sp.) under controlled in vitro conditions. Inoculation of plants with bacterial strains affected the efficiency of phytoremediation process and was expressed as the quantity of accumulated Cd (Q), the bioaccumulation factor (BCF) and the translocation index (Ti); however, the effect was strain and plant organ specific. The level of hydrogen peroxide (H2O2), which is both an indicator of plant response to biological and/or abiotic environmental stress and a molecule involved in plant-microbial interactions, decreased under the influence of Cd2+ in uninoculated plants (plant growth was inhibited by Cd2+) and increased in the inoculated variants of plants growing in the presence of Cd2+ (microbiologically stimulated biomass). The saprophytic fungus Clitocybe sp. generally stimulated biomass and increased the level of H2O2 synthesis in all the investigated plant organs and variants of the experiment. We suggest that determination of phytoremediation efficiency, and biochemical response (H2O2) of the host plant under in vitro conditions can help in predicting the final effect of plant-microbial systems in further field trials.
Przejdź do artykułu

Autorzy i Afiliacje

Michał Złoch
Jarosław Tyburski
Katarzyna Hrynkiewicz


Abstract Soluble N-ethyl-maleimide sensitive factor attachment adaptor protein receptor (SNARE) domain-containing proteins were mainly involved in vesicle-associated membrane fusion. Genetic screening has revealed the function of SNARE in different aspects of plant biology. Among them, Synthaxin-22 (SYP22) a Qa-SNARE has been reported to have a pleiotropic function in plant development including regulation of leaf waving, shoot gravitropism and flowering time. In this study, we identified a new role of SYP22 in regulation of brassinosteroid (BR) signaling, especially in the dark. SYP22 interacts with BR receptor, brassinosteroid insensitive 1 (BRI1), and overexpression of SYP22 enhanced a weak BRI1 mutant bri1-5 phenotype. syp22 mutant exhibits short hypocotyl and it is sensitive to exogenously treated BR while slightly insensitive to BR-biosynthesis inhibitor propiconazole (PCZ) in the dark. Expression levels of BR signaling maker genes ACS5, SAUR15 and IAA19 were slightly higher, while BR6OX2, a BR biosynthesis marker gene, was lower in syp22 compared to the wild-type. In addition, syp22 was sensitive to 2,4-D, a synthetic auxin, in the dark. In conclusion, SYP22 is involved in BR- and auxin-mediated hypocotyl growth inhibition in the dark, which might be via interaction with BR and auxin key regulators to alter their internalization in Arabidopsis.
Przejdź do artykułu

Autorzy i Afiliacje

Ting Shan Yao
Xiao Feng Zhu
Jin Hee Jung
Yuan Hu Xuan


Abstract Galinsoga quadriradiata Ruiz & Pav. is an annual weedy plant that can be found all over the world. It belongs to the Asteraceae family and is recognised as one of the invasive foreign plants in Poland, which are native to Central and South America. The aim of this study was to describe the reproductive features of Galinsoga quadriradiata focusing on the changes that occur during microsporogenesis and microgametogenesis along with the morphology of its pollen. As it is typical of the eudicot clade of Angiosperms, cytokinesis of G. quadriradiata is simultaneous. The pollen grains are tricolporate with spiny outer walls and the course of the microsporogenetic process is fairly typical of the Echinatae group of weed plants. The high viability of the pollen grains, which mature unequally in the inflorescences, and the proper course of meiosis determine whether a plant has the invasive character of Galinsoga quadriradiata.
Przejdź do artykułu

Autorzy i Afiliacje

Jolanta Kolczyk
Monika Tuleja
Bartosz Jan Płachno


Abstract In the previous study we obtained a population of interspecific F1 A. cepa × A. roylei hybrids. In this study, in comparison to the parental species: A. cepa and A. roylei, the F1 hybrids were evaluated in terms of plant morphology, pollen viability, microsporogenesis and female gametophyte. Most of the morphological characters of the F1 hybrids were intermediate as compared to those of both parental accessions. In pollen mother cells (PMCs) of the F1 hybrids abnormalities were observed in meiosis as well as at the tetrad stage. Pollen viability of F1 A. cepa × A. roylei hybrids was reduced to 30.1%. In the F1 hybrids, 45.8% of the analyzed ovules showed developmental disturbances, whereas in 26.7% of the ovules necrotic processes were observed.
Przejdź do artykułu

Autorzy i Afiliacje

Alicja Chuda
Karolina Kłosowska
Adela Adamus


Abstract Prune dwarf virus (PDV) is a member of the Ilarvirus genus which is widely spread all over the world and causes considerable economic losses in nurseries and orchards. The virus is transmitted via seeds and pollen and through vegetative reproduction. However, the mechanisms of cell-to-cell and systemic transport of the virus are still not known. For the first time this study presents phylogenetic characterization of the movement protein (MP) of PDV isolates from the GenBank database in the context of geographic origin. The prepared analyses were based on a comparison of the whole amino acid sequence of the MP-PDV, the RNA-binding domain (RBD) in MP of PDV and MPs of four viruses from the Bromoviridae family with known transport mechanisms. Two different bioinformatic programs ClustalW and Jalview were used, and MP sequence variability up to 8% at the amino acid level among PDV isolates was confirmed. In the constructed phylogenetic trees the isolate sequences clustered in three conserved groups. Further analyses revealed similarity of the MP amino acid sequence of PDV and Alfalfa mosaic virus (AMV) of up to 34% and a 40% similarity of RBD between these viruses which suggested that the PDV transport mechanism may be on some level the same as that for AMV.
Przejdź do artykułu

Autorzy i Afiliacje

Edmund Kozieł
Katarzyna Otulak
Grażyna Garbaczewska


Abstract Chromosome numbers for 16 Hieracium s.str. species from Bosnia and Herzegovina, Bulgaria, Macedonia, Montenegro, Poland, Romania and Serbia are given and their metaphase plates are illustrated. Chromosome numbers are published for the first time for H. filarszkyi Jáv. & Zahn 2n = 3x = 27, H. fritschianum Hayek & Zahn 2n = 3x = 27, H. fritzeiforme Zahn 2n = 3x = 27, H. hercegovinicum (Freyn & Vandas) Szeląg 2n=3x=27, H. nivimontis (Oborny & Zahn) Chrtek fil. 2n = 4x = 36, H. vagneri Pax 2n = 4x = 36, as well as three undescribed species of hybrid origin between H. olympicum Boiss. and H. sparsum Friv. 2n = 4x = 36, H. naegelianum Panc. and H. scardicum Bornm. & Zahn 2n = 3x = 27, and H. transylvanicum Heuff. and H. umbellatum L. 2n = 4x = 36.
Przejdź do artykułu

Autorzy i Afiliacje

Krystyna Musiał
Zbigniew Szeląg


Department of Plant Cytology and Embryology, Jagiellonian University,
Gronostajowa 9, 30-387 Cracow, Poland
Tel.: 48 12 664 6035; Fax: 48 12 664 51 04

Managing Editor
Department of Plant Cytology and Embryology, Jagiellonian University,
Gronostajowa 9, 30-387 Cracow, Poland
Tel.: 48 12 664 6038; Fax: 48 12 664 51 04

Editorial Board

HARVEY E BALLARD, Jr. Department of Environmental and Plant Biology, Ohio University, Porter Hall, Athens, Ohio 45701, USA;
Molecular approaches in plant systematics, ecology and evolution

JÓZEF BEDNARA. Department of Plant Anatomy and Cytology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland;
Plant embryology

BORUT BOHANEC. Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
Plant biotechnology

MAURO CRESTI. Dipartimento di Biologia Ambientale, Sezione Botanica, Universita di Siena, Via P. A. Mattioli 4, I-53100 Siena, Italy;
Sexual plant reproduction; pollen biology; pollen tube; pollen-stigma-style-ovule interaction; cytoskeleton

MARIA CHARZYŃSKA. Department of Plant Anatomy and Cytology, Warsaw University, ul. Miecznikowa 1, 02-096 Warsaw, Poland;
Cytoembryology of flowering plants; anther and pollen development (structural and molecular aspects)

MARTA DOLEŻAL. Academy of Physical Education, Chair of Hygiene and Health Protection, Al. Jana Pawła II 78, 81-571 Cracow, Poland; Fax: +48-12-648 17 07
General and medical mycology; health promotion; medical microbiology

FRANCISZEK DUBERT. Department of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Cracow, Poland;
Physiology of plant growth and development

OL’GA ERDELSKÁ. Institute of Botany, Slovak Academy of Sciences, Dúbravská 14, 84223 Bratislava, Slovak Republic
Plant embryology; developmental biology

JOHANN GREILHUBER. University of Vienna, Institute of Botany, Rennweg 14, 1030 Vienna, Austria;
Plant karyology

ANNA KOLTUNOW. CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia;
Plant reproduction; developmental biology - particularly seed and fruit (cellular and molecular aspects)

JOLANTA MAŁUSZYŃSKA. Department of Plant Anatomy and Cytology, Silesian University, ul. Jagiellońska 28, 40-032 Katowice, Poland;
Plant cytology; cytogenetics

KAROL MARHOLD. Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Praha 2, Czech Republic;
Genome evolution; phylogeny; phylogeography

ELISABETH MATTHYS-ROCHON. ENS Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France;
Plant gametes; pollination; cellular and molecular aspects of fertilization; in vitro development

MARIA PAJĄK. Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland;
Plant embryology; apomixis

JAN J. RYBCZYŃSKI. Botanical Garden - Center for Biological Diversity Conservation of the Polish Academy of Sciences, ul. Prawdziwka 2, 02-973 Warsaw, Poland;
Plant tissue and organ culture; biotechnology; cryopreservation

BARBARA SKUCIŃSKA. Department of Plant Breeding and Seed Science, The Agricultural University of Cracow, ul. Łobzowska 24, 31-140 Cracow, Poland
Plant tissue and organ culture

DAVID TWELL. Department of Biology, University of Leicester Leicester LE1 7RH, United Kingdom;
Plant Reproductive biology; pollen development, germline and gamete development; gene regulation including post-transcriptional and small RNA pathways

HANNA WEISS-SCHNEEWEISS. Plant Evolutionary Cytogenetics Group Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria;
Evolutionary plant cytogenetics

ALEV TOSUN. Department of Pharmacognosy, Ankara University, 06100 Tandogan-Ankara, Turkey;
Natural products; phytochemistry; essential oils; biological activity of plant extracts and isolated compounds

MICHIEL T. M. WILLEMSE. Laboratory of Plant Cell Biology, Wageningen Agricultural University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
Sexual plant reproduction; biology of lower plants

Section Editors

Section name: Plant embryology; plant cell ultrastructure
JERZY BOHDANOWICZ. Department of Plant Cytology and Embryology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland

Section name: Plant genetics and cytogenetics
ROBERT HASTEROK. Department of Plant Anatomy and Cytology, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland

Section name: Plant cell tissue and organ culture; developmental biology
ROBERT KONIECZNY. Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9, 30-387 Cracow, Poland

Section name: Phytochemistry; secondary metabolism; pharmacology; bioactivity of plant natural products; biotechnology
ADAM MATKOWSKI. Chair and Department of Pharmaceutical Biology and Botany, Silesian Piasts University of Medicine in Wrocław, al. Jana Kochanowskiego 10, 51-601 Wrocław, Poland

Section name: Molecular phylogenetics and phylogeography
MICHAŁ RONIKIER. W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Cracow, Poland

Section name: Molecular biology; cytometry; biotechnology
ELWIRA ŚLIWIŃSKA. Laboratory of Molecular Biology and Cytometry, UTP University of Science and Technology, al. Kaliskiego 7, 85-789 Bydgoszcz, Poland

Section name: Plant physiology - photosynthesis and respiration; biotic and abiotic stresses; inter- and intracellular signalling; plant movements; phytohormones in plant growth and development
IRENEUSZ ŚLESAK. Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland



Andrzej Joachimiak (Editor)
ul. Gronostajowa 9 30-387 Kraków, Poland
Phone: +48 12 664 60 36; mobile: +48 662 033 594


Monika Tuleja (Managing Editor)
ul. Gronostajowa 9 30-387 Kraków, Poland
Phone/fax: 48 12 422 8107
Phone:      + 48 12 664 60 38; mobile: +48 508 751 891


Instrukcje dla autorów

ACTA BIOLOGICA CRACOVIENSIA Series Botanica is an English-language journal founded in 1958, devoted to plant anatomy and morphology, cytology, genetics, embryology, tissue culture, physiology, biochemistry, biosystematics, molecular phylogenetics and phylogeography, as well as phytochemistry. It is published twice a year.

1. ACTA BIOLOGICA CRACOVIENSIA Series Botanica publishes original papers embodying the results of experimental or theoretical research, invited reviews, and brief communications. Manuscripts will be considered only on the understanding that they have not been published and are not being considered for publication elsewhere, that all authors agree on the content of the manuscript, and that laws on nature protection were not violated during the study.
Authors have to indicate their specific contributions to the published work in Authors’ Contributions and the sources of financial support of their research in Acknowledgements. They should clearly describe the following in their cover letter: (1) the aims and hypothesis of the paper; (2) the novelty of the paper − new achievements or innovations contained in the paper; and (3) the general significance of their paper.
Articles should be written in English (American spelling). Authors whose native language is not English are strongly advised to have their manuscripts checked by a professional translator or a native speaker prior to submission. Manuscripts should be written concisely. Purely descriptive studies, karyological notes on plants outside of central Europe, papers on economic botany as well as manuscripts of restricted interest generally are not considered for publication. In vitro studies which only describe protocols for plant regeneration without providing relevant biological information will not be considered for publication. A manuscript in the field of plant cell culture, physiology, biochemistry and phytochemistry must contain new insights that lead to a better understanding of some aspect of fundamental plant biology. They should be of interest to a wide audience and/or the methods employed should contribute to the advancement of established techniques and approaches.
Authors are charged a fee for publication of their articles. The bill for publication will be sent with the galley proof. The fee, which is calculated after all articles are accepted, will not exceed 20 USD per printed page for foreign authors and 70 PLZ per printed page for Polish authors. For the standard fee, color illustrations will appear only in the online version of the Journal. At authors’ request and for an extra fee, color illustrations may also appear in the printed version. While sending the manuscript, in the letter to the Editor, the authors should declare their contribution towards the extra costs and enumerate the illustrations which are to be printed in color.

2. Manuscripts should be submitted via the editorial manager:

Department of Plant Cytology and Embryology
Jagiellonian University
ul. Gronostajowa 9, 30-387 Kraków, Poland

Manuscripts will be examined by at least two anonymous and independent refereeswho have declared that they have no conflict of interest with the author(s). Invitedreferees evaluate the manuscript according to the following criteria: (1) formalaspects, (2) originality, (3) importance in its field, (4) theoretical background, (5)adequacy of methodology, (6) results and interpretation, and (7) overall quality.

3. To shorten the review process, authors are asked to indicate 3 or 4 names of specialists working in the same scientific discipline outside of their institution (including the name of their institution and e-mail addresses) who could serve as reviewers of the manuscript. Manuscripts should be double-spaced, with lines numbered. On all points of style regarding text and tables, follow a current copy of the journal. Words to be italicized (scientific names of genus and species only) should be typed in italics.

4. Original papers should not exceed 8 printed pages (approx. 24 manuscript pages including tables and figures).

5. Original papers should be headed by the title of the paper, author’s name, institution, address, e-mail address of corresponding author(s) and short title (no more than 50 characters), and should be preceded by 5-10 Key words and a short Abstract. Original research papers should be divided into the following sections: Introduction, Materials and Methods, Results, Discussion, Conclusion, Authors’ Contributions, Acknowledgements and References.

6. Invited reviews are mostly of limited scope on timely subjects written for a general, well-informed audience. Invited reviews are solicited by the Editor. Ideas for unsolicited reviews should be discussed with the Editor. They are subject to the usual review procedure.

7. Brief communications are short papers (1–4 printed pages) reporting new findings that do not need a standard full-length treatment with the usual main headings. Brief communications are subject to normal review.

8. References in the text should be cited in the following form: Newton (1990) or Newton and Berrie (1982) or (Ward, 1950; Hiroshi and Ohta, 1970). For three or more authors, use the form Zinkowski et al. (1991) or (Zinkowski et al., 1991).
Examples of style for references:
a) citations of journal papers:

PALMER TP. 1962. Population structure, breeding system, interspecific hybridization and alloploidy. Heredity 17: 278-283.
CHEN BY, HENEEN WK, SIMONSEN V. 1989. Comparative and genetic studies of isozymes in resynthesized and cultivated Brassica napus L., Brassica campestris L., and B. alboglabra Baitey. Theoretical and Applied Genetics 77: 673-679.
b) citations of books, congress proceedings, theses:
BERGRREN DJ. 1981. Atlas of Seeds, part 3. Swedish Museum of Natural History, Stockholm.
BING D, DOWNEY RK, RAKOW GFW. 1991. Potential of gene transfer among oilseed Brassica and their weedy relatives. Proceedings of the GCTRC Eighth International Rapeseed Congress, 9-11 July 1991, 1022-1027. Saskatoon, Saskatchewan.
ROMEO JT. 1973. A chemotaxonomic study of the genus Erythrina (Leguminosae). Ph.D. disseration, University of Texas, Austin, TX.
c) citations of articles and chapters from books:
PHILLIPS RL. 1981. Pollen and pollen tubes. In: Clark G [ed.], Staining Procedures, 61-366. Williams and Wilkins, Baltimore, MD.
Authors’ names in References should be written in small caps.

9. Tables must be numbered consecutively with Arabic numerals and submitted separately from the text at the end of the paper. The title should be brief and written in the upper part of the table. Footnotes to tables should be indicated by lower-case letters.

10. Illustrations must be restricted to the minimum needed to clarify the text. Previously published illustrations are not accepted. All figures (photographs, graphs, diagrams) must be mentioned in the text. All figures are to be numbered consecutively throughout and submitted separately. Figure captions should be given on a separate page. Photographs should be submitted the same size as they are to appear in the journal. If reduction is absolutely necessary, the scale desired should be indicated. The publisher reserves the right to reduce or enlarge illustrations. Photographs should match either the column width (83 mm) or the printing area (170 x 225 mm). Whenever possible, several photos should be grouped in a plate. The photos should be sharp, and each one should be marked with a lower-case letter on the plate. For photographs without an integral scale the magnification of photographs must be stated in the legend. Color illustrations will be accepted; however, the author will be expected to contribute towards the extra costs. The charge will not exceed 150 USD per printed page for foreign authors and 500 PLZ per printed page for Polish authors.

11. Manuscripts resubmitted after revision: Submit your text written in a standard program (Microsoft Word). Bitmap graphics files should be written in TIFF, or BMP, and vector graphics in AI or CDR (curves). Illustrations written in MS Word or PowerPoint will not be accepted. Submit the text, tables and each figure (plate) as separate files. Every paper will be checked for style and grammar.
The Editor reserves the right to introduce corrections suggested by the journal’s line editor.

12. Proof will be sent directly to the authors in electronic form as a pdf file. Authors’ corrections have to be inserted in the printout of the PDF proof. The corrected proofs must be returned to the Editor within six days via Editorial Manager or by e-mail. Proofs not returned promptly by authors will be corrected by the Editor.

13. Copyright. Exclusive copyright in all papers accepted for publication must be assigned to the Polish Academy of Sciences, but the Academy will not restrict the authors’ freedom to use material contained in the paper in other works by the authors (with reference where they were first published).

14. Offprints. A pdf of each paper is supplied to the authors free of charge.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji