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Abstract. This article aims to investigate the two-dimensional magnetohydrodynamic (MHD) boundary layer flow of nanofluid. Convective

mass condition is introduced. Analysis has been discussed in the presence of an applied magnetic field. The Brownian motion and ther-

mophoresis effects are incorporated. The arising nonlinear problems are first converted to ordinary differential equations and then series

solutions are constructed. Convergence of series solutions is examined through plots and numerical values. Results are plotted and discussed

for the temperature and concentration. Numerical computations for skin-friction coefficient, local Nusselt and Sherwood numbers are per-

formed and analyzed. Comparison with the previous limiting case is noted in an excellent agreement.
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1. Introduction

In recent times, the sustainable energy generation has been

a very serious issue across the globe. Solar energy perhaps

has a reasonable solution with the hourly solar flux incident

on the earth’s surface being greater than all the consumption

of energy in a year. Solar energy is also known as a best

source of renewable energy with the minimal environmental

impact [1]. Power tower solar collectors are more effective

through the use of nanofluid as a working fluid. On the oth-

er hand, the magnetohydrodynamic (MHD) nanofluid has key

importance in engineering, physics and chemistry. Specifical-

ly such fluids have wide coverage in the optical modulators,

tunable optical fiber filters, optical grating, optical switches,

polymer industry, stretching of plastic sheets and metallurgy.

Several metallurgical processes involve the cooling of contin-

uous strips or filaments by drawing them through a nanofluid.

Such strips in processes of drawing, thinning of copper wires

and annealing are sometimes stretched. The quality and de-

sired characteristics of a final product in such cases strong-

ly depend upon the cooling rate by drawing such strips in

an electrically conducting fluid. The magnetic nanoparticles

are also useful in the construction of loudspeakers, magnet-

ic cell separation, hyperthermia, drug delivery etc. Recently,

the nanofluids in view of their enhanced thermal characteris-

tics have been attracted by the scientists and engineers. It is

known well established fact that the nanofluids improve the

heat transfer performance of many engineering applications.

In fact the traditional fluids like oil, water and ethylene gly-

col mixture are poor heat transfer liquids. The thermal con-

ductivity of such traditional liquids affects the heat transfer

coefficient between the heat transfer medium and heat trans-

fer surface. Various techniques have been utilized to enhance

the thermal conductivity of traditional fluids by suspending

nano/micro or large-sized particles in the liquid [2]. The ad-

dition of nanoparticles in the traditional liquid is very pop-

ular amongst such techniques [3]. As pointed out by Choi

et al. [4], the thermal conductivity of the fluid through such

technique has been improved approximately two times. After

such pioneering research, numerous theoretical and experi-

mental attempts have been made on this topic. For example,

Makinde and Aziz [5] investigated the boundary layer flow

of nanofluid with the convective type temperature condition.

The analysis of Makinde et al. [5] was extended by Alsae-

di et al. [6] by considering the stagnation point flow and

heat source/sink effects. Entropy generation analysis in the

steady flow of nanofluid with a magnetic field was presented

by Rashidi et al. [7]. Turkyilmazoglu [8] provided an exact

solution to MHD flow of nanofluid with a slip condition. Se-

ries solutions for the boundary layer flow of nanofluid over an

exponentially stretching surface were given by Nadeem and

Lee [9]. Mixed convection stagnation point flow of nanofluid

over a stretching/shrinking sheet was numerically examined

by Makinde et al. [10]. Stagnation point flow of nanofluid

over an exponentially stretching sheet was studied by Mustafa

et al. [11]. The authors have developed both numerical and

series solutions. Mutuku-Njane and Makinde [12] addressed

the simultaneous effects of buoyancy force and Navier slip

in magnetohydrodynamic flow of nanofluid over a convec-

tively heated plate. Newtonian heating and viscous dissipa-

tion effects in boundary layer flow of viscous nanofluid were

explored by Makinde [13]. Makinde [14] also discussed the

unsteady flow of viscous nanofluid over a surface with convec-

tive boundary condition. Kuznetson and Nield [15] provided
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a revised model of Cheng-Minkowycz problem for natural

convection boundary layer flow of nanofluid. Very recently,

Mutuku-Njane and Makinde [16] studied the MHD flow of

nanofluid with convective thermal condition.

Boundary layer flow with heat and mass transfer is an im-

portant area of research in fluid dynamics because it occurs

in many chemical and engineering processes like glass-fiber

and paper production, manufacturing of materials by extru-

sion, hot rolling, polymer sheets and filaments, annealing and

thinning of copper wires, cooling of large metallic plate in

a bath etc. In view of all these technological and engineering

applications, there exist ample attempts, for example see [17–

23]. In continuation, Turkyilmazoglu and Pop [24] analyzed

the Soret and heat generation effects on MHD free-convection

flow over an impulsively infinite vertical plate. They also ex-

amined the radiation effects for two different types of thermal

boundary conditions in this study. Entropy generation analy-

sis in an unsteady MHD flow over a stretched rotating disk

was studied by Rashidi et al. [25]. Rundora and Makinde [26]

numerically analyzed the influence of suction/injection on the

variable viscosity non-Newtonian fluid in a channel with con-

vective type heat condition. Recently, Shehzad et al. [27] an-

alytically studied the hydromagnetic three-dimensional flow

of Maxwell fluid with heat generation/absorption. They dis-

cussed the flow situation through prescribed surface temper-

ature and prescribed surface heat flux.

It has been noticed that the heat transfer analysis in the

past has been mostly dealt with the boundary condition ei-

ther through prescribed temperature or heat flux at the sur-

face. Few studies in this direction are made using tempera-

ture convective condition at the surface instead of prescribed

surface temperature or heat flux. However, no attempt is yet

presented for the convective mass condition at the surface.

This study introduces such a condition in the literature. Even

such a condition has not been utilized yet in flow analysis

without nanoparticles. Thus, the present discusses the flow of

nanofluid over a stretching surface. The convective conditions

through temperature and concentration are imposed on the

surface. The governing dimensionless nonlinear ordinary dif-

ferential equations are solved analytically by employing the

homotopy analysis method (HAM) [28–38] and results are

presented in the forms of series. Graphs of various interesting

physical parameters are plotted for the temperature and con-

centration fields. The physical quantities of interest namely the

local skin-friction coefficient and local Nusselt and Sherwood

numbers are computed numerically.

2. Problems development

We consider the two-dimensional (x, y) steady MHD flow of

nanofluid over a stretching surface. Convective heat and mass

conditions are taken into account. It is further assumed that

the surface of sheet is heated by a hot fluid has temperature

Tf and concentration Cf that give heat and mass transfer co-

efficients h1 and h2. The magnetic field of strength B0 is

applied normal to the flow field (see Fig. 1). The magnetic

Reynolds number is chosen small. As a consequence the in-

duced magnetic field is smaller in comparison to the applied

magnetic field. Thus, the induced magnetic field is not con-

sidered. Effects of viscous dissipation and Joule heating are

further considered. The two-dimensional MHD equations for

viscous nanofluid are given by
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Fig. 1. Physical model

The boundary conditions for the considered flow analysis

are

u = uw(x) = cx, v = 0, −k
∂T

∂y
= h1(Tf − T ),

−DB
∂C

∂y
= h2(Cf − C), at y = 0,

(6)

u → 0, T → T∞, C → C∞, when y → ∞, (7)

where u and v are the velocity components in the x− and

y−directions, p the fluid pressure, ρf the density of fluid,
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ν the kinematic viscosity, σ the Steffan-Boltzman constant,

α the thermal diffusivity, τ =
(ρc)p

(ρc)f
the ratio of nanopar-

ticle heat capacity and the base fluid heat capacity, DB the

Brownian diffusion coefficient, DT the thermophoretic diffu-

sion coefficient, k the thermal conductivity, h1 and h2 the heat

and mass transfer coefficients, Tf and Cf the temperature and

concentration of fluid and T∞ and C∞ are the ambient fluid

temperature and concentration.

Equations (2)–(7) can be reduced into the dimensionless

form by introducing the following new variables:

u = cxf ′(η), v = −
√

cνf(η), η = y

√

c

ν
,

θ(η) =
T − T∞

Tf − T∞

, φ(η) =
C − C∞

Cf − C∞

.

(8)

By employing the boundary layer assumptions [39], we have
∂p
∂y = 0. In above expression, η the dimensionless variable

and f , θ and φ are the dimensionless velocity, temperature

and concentration, respectively. Thus by neglecting pressure

gradient in the y-direction, the equation of linear momentum,

energy and concentration in dimensionless form become

f ′′′ + ff ′′ − f ′2 − M2f ′ = 0, (9)

θ′′ + Pr fθ′ + PrNbθ′φ′ + PrNtθ′2

+ PrEcf ′′2 + PrEcM2f ′2 = 0,
(10)

φ′′ + Lefφ′ + (Nt/Nb) θ′′ = 0, (11)

f = 0, f ′ = 1, θ′ = −γ1(1 − θ(0)),

φ′ = −γ2(1 − φ(0)) at η = 0,
(12)

f ′ → 0, θ → 0, φ → 0 as η → ∞, (13)

where M2 = σB2
0
/ρfc is the magnetic parameter, Pr = ν/α

is the Prandtl number, Le = ν/DB is the Lewis num-

ber, Nb = (ρc)pDB(Cf − C∞)/(ρc)fν is the Brownian

motion parameter, Nt = (ρc)pDT (Tf − T∞)/(ρc)fνT∞ is

the thermophoresis parameter, Ec = u2
w/cp(Tf − T∞) and

γ1 = (h1/k)
√

ν/a, γ2 = (h2/DB)
√

ν/a are the Biot

numbers. It is worth mentioning here that γ1 and γ2 are the

heat transfer and mass transfer Biot numbers, respectively.

The skin friction coefficient, the local Nusselt number and

the local Sherwood number are

Cf =
τw

ρfu2
w(x)

, Nux =
xqw

k(Tf − T∞)
,

Shx =
xqm

DB(Cf − C∞)
,

(14)

where τw is the shear stress along the stretching surface, qw is

the surface heat flux and qm is the surface mass flux. The lo-

cal skin-friction coefficient, local Nusselt and local Sherwood

numbers in dimensionless forms are given below:

Re1/2

x Cfx = f ′′(0), Nux/Re1/2

x = −θ′(0),

Shx/Re1/2

x = −φ′(0),
(15)

where Rex = uw(x)x/ν is the local Reynolds number.

3. Homotopy analysis solutions

Considering a set of base functions

{ηk exp(−nη), k ≥ 0, n ≥ 0}
one can express f and θ as follows

fm(η) =

∞
∑

n=0

∞
∑

k=0

ak
m, nηk exp(−nη), (16)

θm(η) =

∞
∑

n=0

∞
∑

k=0

bk
m, nηk exp(−nη), (17)

φm(η) =

∞
∑

n=0

∞
∑

k=0

ck
m, nηk exp(−nη), (18)

in which ak
m, n, bk

m, n and ck
m, n are the coefficients. The initial

approximations and auxiliary linear operators are assumed in

the forms:

f0(η) = 1 − exp(−η), θ0(η) =
γ1 exp(−η)

1 + γ1

,

φ0(η) =
γ2 exp(−η)

1 + γ2

,

(19)

L(f) = f ′′′ − f ′, L(θ) = θ′′ − θ, L(φ) = φ′′ − φ, (20)

with

L(f)(C1 + C2e
η + C3e

−η) = 0,

L(θ)(C4e
η + C5e

−η) = 0, L(φ)(C6e
η + C7e

−η) = 0,
(21)

where Ci (i = 1 − 7) are the arbitrary constants.

The problems at zeroth order deformation are

(1 − p)L(f)
[

f(η; p) − f0(η)
]

= p~fNf

[

f(η; p)
]

,
(22)

(1 − p)L(θ)
[

θ(η; p) − θ0(η)
]

= p~θNθ

[

f(η; p), θ(η, p), φ̄(η, p)
]

,
(23)

(1 − p)L(φ)
[

φ(η; p) − θ0(η)
]

= p~θNθ

[

f(η; p), θ(η, p), φ(η, p)
]

,
(24)

f(0; p) = 0, f
′

(0; p) = 1,

θ
′

(0, p) = −γ1(1 − θ(0, p)),

φ
′

(0, p) = −γ2(1 − φ(0, p)),

(25)

f
′

(∞; p) = 0, θ(∞, p) = 0, φ(∞, p) = 0, (26)

Nf [f(η, p)] =
∂3f(η, p)

∂η3
+ f(η, p)

∂2f(η, p)

∂η2

−
(

∂f(η, p)

∂η

)2

− M2
∂f(η, p)

∂η
,

(27)

Nθ[θ(η, p), f(η, p), φ(η, p)] =
∂2θ(η, p)

∂η2

+ PrNb
∂θ(η, p)

∂η
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Nθ[φ(η, p), f(η, p), θ(η, p)] =
∂2φ(η, p)

∂η2

+Lef(η, p)
∂φ(η, p)

∂η
+ (Nt/Nb)

∂2θ(η, p)

∂η2
,

(29)

where p ∈ [0, 1] is an embedding parameter, ~f , ~θ and ~φ

are the non-zero auxiliary parameters and Nf , Nθ and Nφ are

the nonlinear operators. When p = 0 and p = 1 then we have

f(η; 0) = f0(η), θ(η, 0) = θ0(η),

φ(η, 0) = φ0(η) and f(η; 1) = f(η),

θ(η, 1) = θ(η), φ(η, 1) = φ(η),

(30)

and when p increases from 0 to 1 then f(η, p), θ(η, p) and

φ(η, p) vary from f0(η), θ0(η), φ0(η) to f(η), θ(η) and φ(η).
By Taylor series expansion one obtains

f(η, p) = f0(η) +

∞
∑

m=1

fm(η)pm, (31)

θ(η, p) = θ0(η) +

∞
∑

m=1

θm(η)pm, (32)

φ(η, p) = φ0(η) +
∞
∑

m=1

φm(η)pm, (33)

fm(η) =
1

m!

∂mf(η; p)

∂ηm

∣

∣

∣

∣
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,

θm(η) =
1
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∂ηm

∣

∣

∣

∣

p=0

,

φm(η) =
1

m!
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∂ηm

∣

∣

∣

∣

p=0

,

(34)

where the convergence of above series strongly depends upon

~f , ~θ and ~φ. Considering that ~f , ~θ and ~φ are selected

properly such that (31)–(33) converge at p = 1 and then we

have

f(η) = f0(η) +
∞
∑

m=1

fm(η), (35)

θ(η) = θ0(η) +

∞
∑

m=1

θm(η), (36)

φ(η) = φ0(η) +

∞
∑

m=1

φm(η). (37)

The general solutions can be written as

fm(η) = f∗

m(η) + C1 + C2e
η + C3e

−η, (38)

θm(η) = θ∗m(η) + C4e
η + C5e

−η, (39)

φm(η) = φ∗

m(η) + C6e
η + C7e

−η, (40)

where f∗

m, θ∗m and φ∗

m(η) are the special solutions.

4. Convergence of homtopy solutions

and discussion

Obviously the auxiliary parameters ~f , ~θ and ~φ appear-

ing in the derived series solutions can adjust and control

the convergence of the homotopy solutions. Hence, the ~-

curves are plotted for 22nd-order of approximations in or-

der to determine the range of admissible values of ~f , ~θ

and ~φ. Figure 2 confirms that the admissible values of ~f ,

~θ and ~φ are −1.6 ≤ ~f ≤ −0.08, −1.6 ≤ ~θ ≤ −0.5,

−1.5 ≤ ~φ ≤ −0.4. The series converges in the whole region

of η when ~f = ~θ = ~φ = −1.0 (see Table 1).

Fig. 2. ~−curves for functions f(η), θ(η) and φ(η) at 22th or-

der of approximations when M = 0.4, Pr = 0.9, Le = 2.0,

Nt = Nb = 0.4, γ1 = γ2 = 1.0 and Ec = 0.8

Table 1

Convergence of homotopy solution for different order of approximations

when M = 0.4, Pr = 0.9, Le = 2.0, Nt = Nb = 0.4, γ1 = γ2 = 1.0,

Ec = 0.8 and ~f = ~θ = ~φ = −1.0

Order
of approximation

−f ′′(0) −θ′(0) −φ′(0)

1 1.08000 0.24330 0.32500

10 1.07703 0.04263 0.50080

20 1.07703 0.03833 0.50215

25 1.07703 0.03813 0.50223

31 1.07703 0.03807 0.50225

35 1.07703 0.03807 0.50225

40 1.07703 0.03807 0.50225

50 1.07703 0.03807 0.50225

Figure 3 is plotted to see the change in the velocity f ′(η)
corresponding to different values of M . We have seen that

the velocity and momentum boundary layer thickness are de-

creased. Lorentz force resists in fluid flow that leads to a

reduction in the velocity. To analyze the variations of mag-

netic parameter M , Prandtl number Pr, Biot numbers γ1 and

γ2, thermophoresis parameter Nt, Brownian motion parame-

ter Nb and Eckert number Ec on the dimensionless temper-

ature θ(η), Figs. 4–10 are sketched. Figure 4 indicates that

higher values of magnetic parameter increase the tempera-

ture. A magnetic parameter strongly depends upon the Lorentz

force. The higher magnetic parameter has the stronger Lorentz
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force and the lower magnetic parameter corresponds to the

weaker Lorentz force. The stronger Lorentz force creates more

heat in the fluid that shows an increase in the temperature and

thermal boundary layer thickness. Figure 5 shows that the tem-

perature and thermal boundary layer thickness are reduced for

smaller values of the Prandtl number. The Prandtl number is

the ratio of momentum to thermal diffusivity. For the larger

Prandtl number, the momentum diffusivity increases where-

as the thermal diffusivity is decreased and for lower Prandtl

fluids, momentum diffusivity is smaller in comparison to the

thermal diffusivity. This stronger thermal diffusivity leads to

a thicker thermal boundary layer thickness. An increase in the

Biot number γ1 corresponds to a higher temperature. From

Fig. 6, we analyzed that the temperature is increasing rapid-

ly for γ1 = 0.1 to γ1 = 0.6, 1.2 but for the values greater

than 1.2, it increases slowly. From the definition of the Biot

number γ1, it is clear that the Biot number γ1 involves the

heat transfer coefficient h1. For increasing values of the Biot

number γ1, the heat transfer coefficient increases which yields

heat which leads to increase of temperature. The influence of

Biot number γ2 is examined in Fig. 7. Here one can see that

both temperature and associated layer thickness increase by

increasing Biot number γ2. Biot number γ2 has a great depen-

dence on concentration transfer coefficient h2. The concen-

tration transfer coefficient h2 is increased when we increase

the values of Biot number γ2 due to which the temperature

and thermal boundary layer thickness are enhanced. Figures 8

and 9 illustrate the variations of thermophoresis and Browni-

an motion parameters on the dimensionless temperature. Tem-

perature and thermal boundary layer thickness are enhanced

with the increasing values of thermophoresis and Brownian

motion parameters. An enhancement in the temperature due

to Brownian motion parameter is more pronounced in com-

parison to the thermophoresis parameter. Figure 10 illustrates

that the temperature and thermal boundary layer thickness are

enhanced with an increase in the values of Eckert number.

Fig. 3. Variation in velocity f ′(η) vs η for different values of M

Fig. 4. Variation in temperature θ(η) vs η for different values of M

when Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nt = Nb = 0.5 and

Ec = 0.8

Fig. 5. Variation in temperature θ(η) vs η for different values of Pr
when M = 0.7, Le = 3.0, γ1 = γ2 = 0.5, Nt = Nb = 0.5 and

Ec = 0.8

Fig. 6. Variation in temperature θ(η) vs η for different values of γ1

when M = 0.7, Pr = 0.9, Le = 3.0, γ2 = 0.5, Nt = Nb = 0.5
and Ec = 0.8
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Fig. 7. Variation in temperature θ(η) vs η for different values of γ2

when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = 0.5, Nt = Nb = 0.5
and Ec = 0.8

Fig. 8. Variation in temperature θ(η) vs η for different values of Nt

when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nb = 0.5
and Ec = 0.8

Fig. 9. Variation in temperature θ(η) vs η for different values of Nb

when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nt = 0.5
and Ec = 0.8

Fig. 10. Variation in temperature θ(η) vs η for different values of

Ec when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5 and

Nt = Nb = 0.5

Figures 11–17 present the influences of M , Pr, Le, γ1,

γ2, Nt and Nb on the dimensionless concentration φ(η). The

higher values of magnetic parameter M leads to an increase

in the concentration profile and its related layer thickness. The

effects of magnetic parameter on the dimensionless temper-

ature and concentration are similar (see Figs. 4 and 11). It

is examined from Fig. 12 that concentration boundary layer

thickness is thinner for the higher values of Prandtl number

Pr. Comparison of Figs. 6 and 12 demonstrates that both

temperature and concentration decrease through an increase

in Prandtl number but the decrease in concentration is seen

more dominant as observed for the temperature. The concen-

tration distribution for different values of Lewis number Le
is examined in Fig. 13. Here we have seen that an increase

in Lewis number shows a rapid decrease in the concentration.

Figures 14 and 15 elucidate that concentration is increasing

when the values of Biot numbers γ1 and γ2 are increased. It

is also seen from Fig. 14 that the concentration at the wall

is lower corresponding to the γ2 = 0.1 when γ1 = 0.1. Fig-

ure 16 shows that the variation in concentration profile for

various values of thermophoresis parameter Nt are similar to

that analyzed in Fig. 8 but here the increase in concentration

is more rapid. Figure 17 illustrates that the concentration pro-

file is reduced when there is an increase in Brownian motion

parameter Nb. Here we analyzed that the variation in concen-

tration at Nb = 0.1, 0.3 is higher in comparison to the values

of Nb = 0.5, 0.7 and 0.9.

Table 1 is computed for the numerical values of −f ′′(0),
−θ′(0) and −φ′(0) when ~f = ~θ = ~φ = −1.0, M = 0.4,

Pr = 0.9, Le = 2.0, Nt = Nb = 0.4, γ1 = γ2 = 1.0 and

Ec = 0.8 at different order of HAM approximations. One

can see that the values of −f ′′(0) repeated from 10th-order

of HAM approximations while the values −θ′(0) and −φ′(0)
converge from 31th-order of deformations. It is also examined

from this Table that 31th-order of HAM approximations are

required for a convergent series solutions of temperature and

concentration. Table 2 provides the numerical values of skin-

friction coefficient −f ′′(0) for different values of magnetic
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Fig. 11. Variation in concentration φ(η) vs η for different values of

M when Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nt = Nb = 0.5 and

Ec = 0.8

Fig. 12. Variation in concentration φ(η) vs η for different values of

Pr when M = 0.4, Le = 3.0, γ1 = γ2 = 0.5, Nt = Nb = 0.5 and

Ec = 0.8

Fig. 13. Variation in concentration φ(η) vs η for different values of

Le when M = 0.7, Pr = 0.9, γ1 = γ2 = 0.5, Nt = Nb = 0.5 and

Ec = 0.8

Fig. 14. Variation in concentration φ(η) vs η for different values of

γ1 when M = 0.7, Pr = 0.9, Le = 3., γ2 = 0.5, Nt = Nb = 0.5
and Ec = 0.8

Fig. 15. Variation in concentration φ(η) vs η for different values of

γ2 when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = 0.5, Nt = Nb = 0.5
and Ec = 0.8

Fig. 16. Variation in concentration φ(η) vs η for different values of

Nt when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nb = 0.5
and Ec = 0.8
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Fig. 17. Variation in concentration φ(η) vs η for different values of

Nb when M = 0.7, Pr = 0.9, Le = 3.0, γ1 = γ2 = 0.5, Nt = 0.5
and Ec = 0.8

Table 2

Numerical values of skin friction coefficient −f ′′(0)
for different values of M

M ~ −f ′′(0)

0.0 −1.0 1.00000

0.2 −1.0 1.01980

0.5 −1.0 1.11803

0.8 −1.0 1.28063

1.0 −0.6 1.41421

1.2 −0.6 1.56205

1.5 −0.6 1.80303

Table 3

Numerical values of Nusselt number −θ′(0) for different values of M , Le,

Nt, Nb, γ1 and γ2 when Pr = 1.2 and Ec = 0.5

M Le Nt Nb γ1 γ2 ~ −θ′(0)

0.0 1.5 0.2 0.2 0.3 0.3 −1.0 0.12060

0.5 0.08421

0.7 0.05163

0.3 1.0 0.2 0.2 0.3 0.3 -1.0 0.10714

1.5 0.10714

2.0 0.10714

0.3 1.5 0.1 0.2 0.3 0.3 -1.0 0.10994

0.3 0.10427

0.5 0.09835

0.3 1.5 0.2 0.1 0.3 0.3 -1.0 0.10905

0.3 0.10521

0.5 0.10132

0.3 1.5 0.2 0.2 0.1 0.3 -1.0 0.04647

0.4 0.12787

1.0 0.19541

0.3 1.5 0.2 0.2 0.3 0.1 -1.0 0.10943

0.4 0.10626

1.0 0.10294

parameter M . The values of skin-friction coefficient are small-

er for the lower values of M . For M = 0.0, there is no mag-

netohydrodynamic flow. The numerical values of local Nus-

selt and Sherwood numbers −θ′(0) and −φ′(0) for different

values of M , Le, Nt, Nb, γ1 and γ2 are computed in the

Tables 3 and 4. The values of −θ′(0) and −φ′(0) are quite

opposite for increasing values of M and Le. We have seen

that the decrease in −θ′(0) corresponding to the higher val-

ues of Le are very small. The values of local Nusselt number

are decreased with an increase in Nt and Nb. The values of

local Sherwood number are increased by increasing Nb. To

validate our solutions, we computed the values in Table 5.

This Table guarantees that our solutions are correct because

an excellent agreement is noted with the previous results in

the limiting cases.

Table 4

Numerical values of Sherwood number −φ′(0) for different values of M ,

Le, Nt, Nb, γ1 and γ2 when Pr = 1.2 and Ec = 0.5

M Le Nt Nb γ1 γ2 ~ −φ′(0)

0.0 1.5 0.2 0.2 0.3 0.3 -1.0 0.22066

0.5 0.22953

0.7 0.23742

0.3 1.0 0.2 0.2 0.3 0.3 -1.0 0.20284

1.5 0.22396

2.0 0.23791

0.3 1.5 0.1 0.2 0.3 0.3 -1.0 0.22230

0.3 0.22628

0.5 0.23319

0.3 1.5 0.2 0.1 0.3 0.3 -1.0 0.22547

0.3 0.22347

0.5 0.22308

0.3 1.5 0.2 0.2 0.1 0.3 -1.0 0.23318

0.4 0.22082

1.0 0.21066

0.3 1.5 0.2 0.2 0.3 0.1 -1.0 0.09019

0.4 0.27494

1.0 0.46576

Table 5

Comparison of values of −θ′(0) for different values of Pr with the

previous existing results when Nt = Nb = 0.0 and γ1 = 1000

Pr −θ′(0)

Present results [5] [6]

0.07 0.06637 0.0663 0.0663

0.20 0.61913 0.1691 0.1691

0.70 0.45395 0.4539 0.4539

2.00 0.91132 0.9113 0.9113

5. Concluding remarks

Effects of convective heat and mass conditions in the MHD

boundary layer flow of nanofluid over a stretching surface

with viscous dissipations and Joule heating are studied. The

main observations of the presented analysis are listed below.

1. Higher values of magnetic parameter M enhance the tem-

perature and concentration profiles.

2. A decrease in concentration distribution is more pro-

nounced in comparison with temperature for the increasing

values of Prandtl number Pr.
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3. Temperature and thermal boundary layer thickness are in-

creasing functions of Eckert number Ec.

4. Both temperature and concentration fields are increased by

increasing the values of Biot numbers γ1 and γ2.

5. An increase in temperature is more dominant by increas-

ing the values of a thermophoresis parameter in comparison

with the Brownian motion parameter.

6. Concentration boundary layer thickness is thinner for high-

er values of Lewis number Le.

7. Increasing values of magnetic parameter M leads to an

increase in the skin-friction coefficient.
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