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Axi-symmetric ice sheet flow with evolving anisotropic fabric
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Abstract. An axially symmetric, gravity driven, steady flow of a grounded polar ice sheet with a prescribed temperature field is considered.
The ice is treated as an incompressible, non-linearly viscous, anisotropic fluid, the internal structure (fabric) of which evolves as ice descends
from the free surface to depth in an ice sheet. The evolution of the ice fabric is described by an orthotropic constitutive law which relates the
deviatoric stress to the strain-rate, strain, and three structure tensors based on the current (rotating) principal stretch axes. The solution of the
problem is constructed as a leading-order approximation derived from asymptotic expansions in a small parameter that reflects the small ratio
of stress and velocity gradients in the lateral direction of the ice sheet to those in the thickness direction. Numerical simulations of the flow
problem have been carried out for various sets of rheological parameters defining the limit strength of the anisotropic fabric in ice. The results
of calculations illustrate the influence of the ice anisotropy, basal melt conditions and temperature field in ice on the glacier thickness and lateral
span, and on the depth profiles of the flow velocity.
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1. Introduction

Ice cores retrieved from large polar ice caps in Antarctica and
Greenland show strong anisotropic fabrics, in which individ-
ual ice crystalc-axes (axes of crystal hexagonal symmetry) are
aligned along some preferential directions [1]. These fabrics
develop, and subsequently evolve, in the material in response
to changing stress and deformation states which ice experi-
ences during its descent from the free surface to depth in an
ice sheet. As a result, the microscopic structure of the mate-
rial varies with ice depth, and this translates into considerable
changes in the macroscopic properties of the medium. For in-
stance, macroscopic shear viscosity of ice that is found near
a glacier base is, typically, by up to one order of magnitude
smaller than the viscosity of initially isotropic ice that is de-
posited on the free surface. Smaller, but also significant, differ-
ence between the surface and the basal ice occurs in terms of its
axial viscosity. Such dramatic changes in the viscous proper-
ties of the medium with increasing depth must have important
consequences for the overall flow of polar ice masses (which,
on geophysical scales, deform mainly by viscous creep); there-
fore, the mechanism of evolving anisotropy should be incor-
porated into realistic models describing the behaviour of ice.
However, in current large-scale numerical models used to sim-
ulate the past and future climatic scenarios and their effects
on the flow of ice caps, the evolving anisotropy of ice is com-
monly ignored and, for simplicity, the material is treated as
isotropic. In such models, in order to account for the variation
of creep properties of ice to reflect its anisotropy, the material
rheology is described in terms of so-called enhancement fac-
tors [2], the values of which are chosen ad hoc to fit available
empirical data (measurements of the free surface velocities and
ice core fabrics). Only few attempts have been made to ex-
tend this approach by employing a method in which a single,

general relation between the flow field and the observed fab-
ric is used throughout a whole ice sheet. An example are the
papers by Mangeney et al [3,4], who adopted the transversely
isotropic fabric corresponding to that drilled in Central Green-
land to solve numerically a steady-state flow problem of the ice
sheet under isothermal conditions. In these papers, however,
the empirically derived fabric is a function of the ice depth
only, since no constitutive equation that relates the fabric evo-
lution to the flow field is included in the analysis. Hence, the
fabric adopted in the latter papers isstatic, that is, uncoupled
from the flow field.

In this work we make a step further, and solve a more dif-
ficult problem, in which the flow field is not only a function
of the anisotropic fabric, but also the fabric itself is a func-
tion of the flow field variables which determine how the fab-
ric evolves to adjust to varying local flow conditions. Accord-
ingly, there is full coupling between the flow and theevolving
fabric, so that the fabric determination constitutes an integral
part of the problem solution. To this aim, we describe the ice
fabric evolution by applying a constitutive law formulated by
Staroszczyk and Morland [5], in which the medium is treated
as an anisotropic viscous fluid with orthotropic material sym-
metries, and which expresses the deviatoric stress in terms of
the strain-rate and the current strain. The law involves two ice
response coefficient functions which have been determined by
correlation with the observed viscous behaviour of ice at in-
definitely large deformations. Furthermore, the adopted law
incorporates strong non-linear effects of temperature and the
deviatoric stress magnitudes on the viscous behaviour of ice.

We analyse a steady flow of a radially symmetric ice sheet
which slides on a rigid bedrock, and whose motion is driven by
gravity forces. At the free surface of the sheet a snow accumu-
lation rate distribution is assumed, defining the mass fluxes into
and out of the glacier across its top surface. Similarly, an ice
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melt rate is assumed at the base of the sheet to define the mass
flux across the bottom surface. The temperature field within
the ice sheet is also prescribed, so that the mass and momen-
tum balance equations are uncoupled from the energy balance
equations. For the above input conditions, the unknown geom-
etry of the glacier, that is, the free surface profile (including
the maximum glacier thickness and the lateral span) is deter-
mined. The main purpose of the analysis is to investigate how
the anisotropy of ice influences the overall flow of the ice sheet,
and, in particular, how it affects the ice velocity field (which is
important to know when choosing locations for polar stations
or ice core drilling sites).

The solution of the problem is constructed by a method of
asymptotic expansions. Hence, we take advantage of a small
parameterε reflecting the small ratio of stress and velocity gra-
dients in the lateral direction to those in the ice thickness direc-
tion, and use this parameter to scale the ice flow equations and
the boundary conditions. Then, all terms of orderε and smaller
compared to unity are neglected in the ensuing equations with
the aim to reduce them to simpler, leading-order, forms. The
reduced equations are subsequently integrated through the ice
thickness to eliminate one spatial coordinate. This gives rise
to a two-point boundary-value problem for a second order
parabolic differential equation, which is solved numerically to
calculate the free surface profile. Simultaneously, a set of dif-
ferential equations of a hyperbolic type is also integrated along
the ice particle paths (characteristics) to determine the evolu-
tion of the material properties as ice moves inside the glacier.
The results of calculations, carried out for different sets of ice
rheological parameters, different basal melt rates and differ-
ent temperature distributions, illustrate the effects of the latter
factors on the glacier geometry (thickness and span), and the
depth profiles of the ice velocities.

2. Flow problem formulation

The problem is solved in cylindrical polar coordinates(r, θ, z),
with ther axis on the horizontal plane, and the vertical axisz
directed upwards. It is assumed that the ice sheet geometry and
all variables involved are symmetric about thez axis, so that
they are independent of the polar angleθ and, hence, they are
functions of onlyr andz. The ice sheet cross-section, with the
adopted coordinates and other relevant notations, is sketched
in Fig. 1. The ice sheet geometry is defined by the free surface
elevationz = h(r) and the bed elevationz = f(r). The ice
sheet ends at the margin, where the ice thickness becomes zero,
h = f . The free surface is traction free, with the stress in ice
measured relative to atmospheric pressure assumed to be uni-
form. At the free surface there is an ice accumulation, a mass
flux per unit area,q, as ice enters the glacier due to precipita-
tion or ablation/melting, respectively. The accumulation rateq,
in general a function ofh andr, is regarded positive (snowfall)
at higher altitudes in central regions of the sheet, and negative
(ablation/melting) at lower altitudes near the margins. At the
bed, there is also a mass flux, denoted byb, due to ice melting
(b > 0) or refreezing (b < 0). Moreover, depending on lo-
cal conditions, basal sliding may, or may not, occur at the bed.

There can also be heat fluxes across the glacier boundaries, but
these are neglected in this analysis.

Fig. 1. Ice sheet geometry

The velocity fieldv in our steady flow is described by
the radial and vertical componentsu(r, z) andw(r, z), respec-
tively. The rate of deformation of ice, the viscous fluid, is mea-
sured by the strain-rate tensorD, the non-vanishing compo-
nents of which are expressed in terms of the velocities by

Drr =
∂u

∂r
, Dθθ =

u

r
,

Dzz =
∂w

∂z
, Drz =

1
2

(
∂u

∂z
+

∂w

∂r

)
.

(1)

It is commonly assumed in glaciology that the viscous defor-
mation (creep) of ice does not depend on the mean pressure,p,
so that the medium can be treated as an incompressible mate-
rial, the behaviour of which is governed by the stress deviator,
S. Hence, the mass balance equation becomes the ice incom-
pressibility conditiontr D = 0 (tr is the trace operator), which
in components reads

∂u

∂r
+

u

r
+

∂w

∂z
= 0. (2)

The deviatoric stress is defined in terms of the Cauchy stressσ
and the pressure by the decomposition

S = σ + pI, p = − 1
3 trσ, (3)

whereI is the unit tensor. Relations (3) give the non-zero de-
viatoric stress components

Srr = σrr + p, Sθθ = σθθ + p,

Szz = σzz + p, Srz = σrz.
(4)

The horizontal radial and vertical momentum balances, in the
absence of inertia forces in our extremely slow flow, become
the equilibrium relations under gravity

∂Srr

∂r
+

Srr − Sθθ

r
+

∂Srz

∂z
− ∂p

∂r
= 0, (5)

∂Srz

∂r
+

Srz

r
+

∂Szz

∂z
− ∂p

∂z
− %g = 0, (6)

and the circumferential balance is automatically satisfied be-
cause of the radial symmetry of the problem. In the latter equa-
tions,% denotes the ice density, andg is the gravitational ac-
celeration.
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The mass and momentum balances (2), (5) and (6) are sub-
ject to boundary conditions at the free surface and the bed, ex-
pressing the interactions of the glacier with the atmosphere and
the bedrock. Define the unit outward normal and tangent vec-
torsn ands in a right-hand sense, as depicted in Fig. 1. Then,
the zero traction condition atz = h(r) is expressed in terms of
vanishing normal and tangential componentstn = n ·σn and
ts = s · σn in theOrz plane. Accordingly,

z = h(r) :

∆2
htn = −∆2

hp + [h′(r)]2Srr + Szz − 2h′(r)Srz = 0, (7)

z = h(r) :

∆2
hts = h′(r)(Szz − Srr) + {1− [h′(r)]2}Srz = 0, (8)

where(·)′ denotes differentiation with respect to the argument,
and

∆h = {1 + [h′(r)]2}1/2. (9)

The prescription of mass flux across the free surface yields the
kinematic condition in the form

z = h(r) : h′(r)u− w = ∆hq. (10)

At the prescribed bedz = f(r), normal and tangential trac-
tions,tn andts respectively, are expressed by

z = f(r) :

∆2
f tn = −∆2

fp + [f ′(r)]2Srr + Szz − 2f ′(r)Srz, (11)

z = f(r) :

∆2
f ts = f ′(r)(Szz − Srr) + {1− [f ′(r)]2}Srz, (12)

where
∆f = {1 + [f ′(r)]2}1/2, (13)

and normal and tangential velocities at the bed,vn andvs re-
spectively, are given by

z = f(r) : ∆fvn = f ′(r)u− w, ∆fvs = −u− f ′(r)w.
(14)

The kinematic condition prescribing the normal basal mass
flux due to ice melt (drainage) or refreezing becomes

z = f(r) : f ′(r)u− w = ∆f b. (15)

At the bed either no-slip or sliding can occur. In the former
case, the ice particle velocity component tangential to the sur-
facef(r) is zero, that is,vs = 0. This, in view of (14)2, is
equivalent to

u + f ′(r)w = 0. (16)

In the case of sliding, the basal tangential tractionts is related
to the tangential velocityvs and the normal pressurep = −tn
by a sliding law. We adopt a linear form of the latter, defined
by

z = f(r) : ts = λtnvs, (17)

whereλ is a constant friction coefficient. The proportionality
of ts to tn ensures that, as a margin is approached and the
pressure approaches zero, the free surface slope at a margin
is bounded (Morland and Johnson [6]); in the case of no-slip
basal conditions, the slope at the margin is unbounded.

3. Orthotropic constitutive law

The solution of the momentum balance equations, (5) and (6),
requires a constitutive law for the deviatoric stress — the mean
pressurep is not prescribed by the constitutive relation due
to the ice incompressibility. Various aspects of the constitu-
tive modelling of anisotropic ice are discussed in detail by
Staroszczyk [7], below we briefly present only those elements
which are relevant in the context of this work.

We adopt here the law in the orthotropic form proposed in
[5], which is a modification of an earlier constitutive model
formulated by Staroszczyk and Morland [8]; an alternative
theory is presented by Morland and Staroszczyk in [9]. The
adopted law is expressed in an additive form, in which the
viscous response of the material is decomposed into isotropic
and anisotropic parts, with the latter describing the evolution of
the oriented fabric from its initial isotropic state. The isotropic
part relates the deviatoric stress to the strain-rate only, alike the
conventional isotropic viscous fluid flow law. The anisotropic
part, apart from the strain-rate, also includes the dependence
on the strain, introduced to allow the evolution of the oriented
structure of the medium to be followed while the ice under-
goes changing stress/strain regimes during its motion. Hence,
we apply the law

S =

µ0

{
2D +

3∑
s=1

f̃(bs)
[
M (s)D + DM (s) − 2

3 tr(M (s)D)I
]

+ g̃(K)
[
BD + DB − 2

3 tr(BD)I
]}

, (18)

whereµ0 is the viscosity of isotropic ice,̃f(bs) (s = 1, 2, 3)
and g̃(K) denote fabric response coefficients,B is the left
Cauchy-Green deformation tensor, andbs andK = tr B are
the invariants ofB. M (s) (s = 1, 2, 3) are three structure ten-
sors which describe the orientation in space of the privileged
directions in the material. The latter are aligned along the cur-
rent directions of the principal stretch axes, and define the three
(rotating) planes of the orthotropic symmetry of the medium.
Thus, they are defined by the outer products of the normalized
eigenvectors ofB, that is,

M (s) = e(s) ⊗ e(s), Be(s) = bse
(s), |e(s)| = 1

(s = 1, 2, 3),
(19)

wherebs, the invariant arguments of the functionsf̃ andg̃, are
the eigenvalues ofB, ande(s) are the eigenvectors of the latter.
The specific forms of the fabric response functions have been
constructed by first deducing some of their general properties,
and then by correlating them with empirical results describing
the viscous behaviour of ice [8]. The form off̃ adopted in this
work is defined by

f̃(bs) = f̃∞ − (f̃∞ − f̃0) exp (−ζbn
s ) , ζ > 0, n > 0,

(20)
wheren is a free parameter, andζ is determined by the condi-
tion f̃(1) = f̃ ′(1) [5]. The fabric response functioñg is related
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to f̃ by

g̃(K) = − f̃(b)− f̃(b−1)
b− b−1

, 2b = K−1+
√

(K − 1)2 − 4 .

(21)
The constants̃f0 andf̃∞, appearing in (20), are given by

f̃0 = E−1
s − 1, f̃∞ = 6E−1

a − 5E−1
s − 1, (22)

whereEa and Es denote so-called enhancement factors for
compression and shear, respectively. These two factors are
measured in laboratory tests and their values denote the ratios
of the isotropic ice viscosity to the anisotropic ice viscosity at
indefinitely large, axial or shear, strains.

The isotropic ice viscosityµ0 depends on temperature and
the stress/strain-rate magnitude. This, strongly non-linear, de-
pendence is expressed here in the form obtained by correlation
with experimental results

µ0(T, J) =
σ0

2D0
a−1(T )ψ−1(J), (23)

whereT denotes absolute temperature,J is the second prin-
cipal deviatoric stress invariant, andσ0 = 105 Pa andD0 =
1 yr−1 = 3.17× 10−8 s−1 (where ‘yr’ stands for the year) are
normalizing stress and strain-rate magnitudes. The dimension-
less functionsa andψ have the representations derived in [10]:

a(T̄ ) = 0.68 exp(12T̄ ) + 0.32 exp(3T̄ ),
T̄ = (T − 273.15 K)/ [20 K],

(24)

ψ(J) = 0.3336 + 0.32J + 0.0296J2,

J = 1
2 tr(S/σ0)2.

(25)

The ice fabric is described in (18) by the left Cauchy-Green
tensorB, and this requires the deformation gradient tensorF ,
sinceB = FF T (the superscriptT denotes the transpose). In
our axially symmetric flow,F has five non-trivial components

Frr =
∂r

∂r∗
, Fθθ =

r

r∗
, Fzz =

∂z

∂z∗
,

Frz =
∂r

∂z∗
, Fzr =

∂z

∂r∗
,

(26)

wherer∗ andz∗ denote the particle reference (material) coor-
dinates. The evolution of the deformation field with timet is
governed by the kinematic relation

Ḟ = LF , Ḟij =
∂Fij

∂t
+vk

∂Fij

∂xk
(i, j, k = r, θ, z), (27)

where the superimposed dot denotes material time derivative,
andL is the velocity gradient tensor. The latter has five non-
zero components given by

Lrr =
∂u

∂r
, Lθθ =

u

r
, Lzz =

∂w

∂z
,

Lrz =
∂u

∂z
, Lzr =

∂w

∂r
.

(28)

The relation (27) is equivalent to five first-order differential
equations, though only four of them are independent due to the
ice incompressibility constraintdetF =1, that is,

Fθθ(FrrFzz − FrzFzr) = 1. (29)

4. Scaled equations
The solution of the complete set of equations governing the ice
sheet flow, as given in Section 2, encounters serious numerical
difficulties, and in fact is still beyond the reach of theoreti-
cal glaciology, even in the case of isotropic ice. The numerical
difficulties arise, first of all, due to the presence of mowing
boundaries in the problem, so that the equations are solved on
an unknown domain. An additional difficulty is due to the ice
incompressibility condition, as it gives rise to unstable solu-
tions when standard numerical techniques are applied. There-
fore, instead of attempting to solve the full equations, a more
effective approach is to construct an approximate solution by
employing the method of asymptotic expansions. The method
exploits the small aspect ratio of natural ice masses,ε (of a
typical magnitude of order10−3), and, by integration of the
balance equations through the ice sheet to eliminate one spa-
tial coordinate, enables significant simplification of the flow
equations. Such an approach, known as the Shallow Ice Ap-
proximation, or Reduced Model, was pioneered by Fowler and
Larson [11], Morland and Johnson [6], and Hutter [12,13], and
has found numerous applications ever since. For axially sym-
metric flows, but of the isotropic ice, the approach was em-
ployed by Morland [14] and Cliffe and Morland [15]. Here we
apply it to the anisotropic ice flow.

The basis of the method is to perform appropriate scalings:
first, to eliminate physical dimensions from the equations by
using typical magnitudes of quantities involved, and second,
to stretch the horizontal coordinate and velocity so that both,
radial and vertical, coordinates and velocity components be-
come order unity. This enables the proper estimation of rela-
tive magnitudes of all terms appearing in the flow equations,
so that those terms which are less important than other can be
eliminated from the analysis. Hence, we adopt characteristic
magnitudes:h∗, a typical ice thickness, used as a length unit,
and v∗, a typical accumulation rate, used as a velocity unit.
These two units determine other scaling parameters: a stress
unit τ∗ = %gh∗, a strain-rate unitD∗ = v∗/h∗, a time scale
t∗ = h∗/v∗ = 1/D∗, and a viscosity unitµ∗ = τ∗h∗/v∗.
By using the adopted scales, we introduce dimensionless vari-
ables, indicated by a superposed bar, defined by

(r̄, z̄) = (r, z)/h∗, (ū, w̄) = (u,w)/v∗, (S̄, p̄) = (S, p)/τ∗,

(L̄, D̄) = (L, D)/D∗, t̄ = t/t∗, µ̄0 = µ0/µ∗.
(30)

Further, by means of the parameterε, we stretch the radial co-
ordinate and the radial velocity, leaving the vertical counter-
parts unchanged, to obtain

R = εr̄, Z = z̄, U = εū, W = w̄. (31)

This results inR, Z, U and W all being order unity. We
also introduce the normalized free surface and bed profiles,
H(R) = h/h∗ and F (R) = f/h∗ respectively, and their
slopesH ′(R) = Γ (R) andF ′(R) = β(R), all being order
unity as well. The dimensionless stresses defined by (30) are
rescaled in an analogous manner, so that

S̄rr = εΣrr, S̄θθ = εΣθθ, S̄zz = εΣzz,

S̄rz = εΣrz, p̄ = P,
(32)
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whereΣij are order unity components of a normalized devia-
toric stress tensorΣ.

Application of the above scalings to the mass balance rela-
tion (2) yields

∂U

∂R
+

U

R
+

∂W

∂Z
= 0, (33)

and the momentum balance equations, (5) and (6), give

ε

(
∂Σrr

∂R
+

Σrr −Σθθ

R

)
+

∂Σrz

∂Z
− ∂P

∂R
= 0, (34)

ε2
(

∂Σrz

∂R
+

Σrz

R

)
+ ε

∂Σzz

∂Z
− ∂P

∂Z
= 1. (35)

In normalized variables, the zero traction conditions (7) and
(8) become

Z = H(R) : −∆2
hP + εΣzz − 2ε2ΓΣrz + ε3Γ 2Σrr = 0,

(36)

Z = H(R) : (1− ε2Γ 2)Σrz + εΓ (Σzz −Σrr) = 0, (37)

and the free surface kinematic condition (10) takes the form

Z = H(R) : ΓU −W = ∆hQ, (38)

whereQ = q/v∗ is a normalized ice accumulation rate. Sim-
ilarly, the scaled relations for the basal normal and tangential
tractions, (11) and (12), become

Z = F (R) : ∆2
fTn = −∆2

fP + εΣzz − 2ε2βΣrz + ε3β2Σrr,

(39)

Z = F (R) : ∆2
fTs = (1− ε2β2)Σrz + εβ(Σzz −Σrr),

(40)

whereTn = tn/τ∗ andTs = ε−1ts/τ∗ are scaled basal trac-
tions, both of order unity. The normal and tangential compo-
nents of the basal velocity, given by (14), are

Z = F (R) : ∆fVn = βU −W, ∆fVs = −U − ε2βW,
(41)

whereVn = vn/v∗ andVs = εvs/v∗ denote order unity com-
ponents of the basal velocity. The kinematic condition at the
bed, (15), is defined by

Z = F (R) : βU −W = ∆fB, (42)

whereB = b/v∗ is a normalized melt rate. The expressions
for ∆h and∆f , see (9) and (13), now have the forms

∆h = (1 + ε2Γ 2)1/2 , ∆f = (1 + ε2β2)1/2 . (43)

Further, the sliding law, in physical variables given by (17), in
the normalized dimensionless form becomes

Ts = ΛTnVs, (44)

whereΛ = ε−2v∗λ is an order unity or greater normalized
basal friction coefficient.

Finally, we need the constitutive equation, given by (18), to
be expressed in the scaled variables. This requires the strain-
rate components (1) to be defined in terms of the stretched vari-
ables (31). Accordingly,

D̄rr =
∂U

∂R
, D̄θθ =

U

R
, D̄zz =

∂W

∂Z
,

D̄rz =
1
2

(
ε−1 ∂U

∂Z
+ ε

∂W

∂R

)
,

(45)

showing that the dominant component, of orderε−1, is D̄rz.
After applying the scalings (30) and (32), the orthotropic con-
stitutive law (18) takes the dimensionless form

Σ =

εµ̃0

{
2D̄ +

3∑
s=1

f̃(bs)
[
M (s)D̄ + D̄M (s) − 2

3 tr(M (s)D̄)I
]

+ g̃(K)
[
BD̄ + D̄B − 2

3 tr(BD̄)I
]}

, (46)

whereµ̃0 is a dimensionless normalized viscosity defined by

µ̃0 =
1
2

a−1(T )ψ−1(J). (47)

By construction ofa(T ) andψ(J), µ̃0 is, at near-melting tem-
peratures, an order unity quantity. Sincef̃(bs) and the compo-
nents ofg̃(K)B andM (s) (s = 1, 2, 3) are all of order unity,
the maximum components of̄D are of orderε−1, and on ac-
count of the scalings (30) and the definition (23), the value of
the small parameterε is determined by

ε =
1
h∗

(
σ0v

∗

%gD0

)1/2

. (48)

Choosing typical magnitudes of the ice thickness ash∗ =
2000 m and the accumulation rate asv∗ = 1 m yr−1 = 3.17×
10−8 m s−1, with the ice density% = 917 kg m−3 andg =
9.81 m s−2, the latter relation yieldsε = 0.00167 ∼ 1/600.
The invariantJ , required to calculatẽµ0, when expressed in
terms of the normalized stressesΣij , becomes

J = ϑ
[
Σ2

rz + 1
2

(
Σ2

rr + Σ2
θθ + Σ2

zz

)]
, ϑ =

%gv∗

σ0D0
= 0.09.

(49)
The deviatoric stress components, prescribed by the constitu-
tive law (46), are given by

Σrr = 2µ̃0ε
[
(1 + 2C1)D̄rr − C2D̄θθ − C3D̄zz + C4D̄rz

]
,

Σθθ = 2µ̃0ε
[−C1D̄rr + (1 + 2C2)D̄θθ − C3D̄zz − 2C4D̄rz

]
,

Σzz = 2µ̃0ε
[−C1D̄rr − C2D̄θθ + (1 + 2C3)D̄zz + C4D̄rz

]
,

Σrz = 2µ̃0ε
[
C4(D̄rr + D̄zz) + (1 + C5)D̄rz

]
,

(50)

where the coefficientsCi (i = 1, . . . , 5) are defined by

C1 = 1
3

[
f̃(b1)M (1)

rr + f̃(b3)M (3)
rr + g̃(K)Brr

]
,

C2 = 1
3

[
f̃(b2) + g̃(K)Bθθ

]
,

C3 = 1
3

[
f̃(b1)M (1)

zz + f̃(b3)M (3)
zz + g̃(K)Bzz

]
, (51)

C4 = 1
3

[
f̃(b1)M (1)

rz + f̃(b3)M (3)
rz + g̃(K)Brz

]
,

C5 = 1
2

[
f̃(b1) + f̃(b3) + g̃(K)(Brr + Bzz)

]
.

The above coefficients describe the strength of anisotropy of
the fabric. In undeformed state, whenB = I, all these co-
efficients become zero, which is ensured by the construction
of the functionsf̃ and g̃ [5,7]. Then, the relations (50) yield
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Σij = 2µ̃0εD̄ij , which is the viscous flow law for an isotropic
fluid.

In order to follow the evolution of the fabric, described by
(27), we also need the components ofF andL to be expressed
in the stretched coordinates. These are

Frr =
∂R

∂R∗
, Fθθ =

R

R∗
, Fzz =

∂Z

∂Z∗
,

Frz = ε−1 ∂R

∂Z∗
, Fzr = ε

∂Z

∂R∗
,

(52)

whereR∗ = εr∗/h∗ andZ∗ = z∗/h∗ are the stretched refer-
ence coordinates, and

L̄rr =
∂U

∂R
, L̄θθ =

U

R
, L̄zz =

∂W

∂Z
,

L̄rz = ε−1 ∂U

∂Z
, L̄zr = ε

∂W

∂R
.

(53)

5. Leading-order solutions
We now construct an approximate solution of the equations
that are derived in the preceding section in the form of expan-
sions in the small parameterε ¿ 1. To this aim, we first neglect
in the full equations all terms which are of orderε or smaller
compared to unity, and then solve the simplified equations to
obtain the leading-order solution of the flow problem. The ap-
proximate solution is constructed under the standardReduced
Model assumption that the bed slopesf ′(r) are of orderε or
less, that is, the normalized slopesβ = F ′(R) are of order
unity or less [6,13]. The situations in which the bed slopes are
of larger magnitudes have been treated, for isotropic ice, by
Morland [16] and Schoof [17].

Hence, we simplify the relevant equations from Section 4
by omitting all terms with the factorsε, ε2 and ε3, consider-
ing them to be negligibly small. The mass conservation bal-
ance equation (33), as it does not involveε, is solved in its full
form. The horizontal and vertical equilibrium equations, (34)
and (35), become

∂P

∂R
=

∂Σrz

∂Z
,

∂P

∂Z
= −1. (54)

The expressions (43), due to the assumption that the normal-
ized free surface and bed slopes,Γ andβ respectively, do not
exceed unity, yield

∆h = 1, ∆f = 1. (55)

Therefore, the free surface zero traction conditions, defined by
(36) and (37), become, to leading order,

Z = H(R) : P = 0, Σrz = 0, (56)

and the free surface kinematic condition is

Z = H(R) : ΓU −W = Q. (57)

At the bedZ = F (R), the normal and tangential traction com-
ponents, (39) and (40), are expressed, to leading order, by

Z = F (R) : Tn = −P, Ts = Σrz, (58)

the velocity components, (41), are now given by

Z = F (R) : Vn = βU −W, Vs = −U, (59)

and the basal kinematic condition, (42), is

Z = F (R) : βU −W = B. (60)

With the basal tractions and velocities defined by (58) and (59),
the leading-order form of the sliding law (44) is expressed by

Z = F (R) : Σrz = ΛPU. (61)

The deviatoric stress components are prescribed by expres-
sions (50) and (51). The coefficientsCi (i = 1, . . . , 5) define
changes in the viscosities relative to unity as ice evolves from
initially isotropic to fully anisotropic fabric. Experimental evi-
dence shows that the ice viscosities do not vary by more than a
factor of10. On the other hand, as indicated by relations (45),
the shear strain-rates̄Drz are by the factor ofε−1 ∼ 600 À 10
greater than each of the axial strain-rates. This implies that in
strongly anisotropic fabrics all the componentsΣij are of the
same order, governed by the magnitude ofD̄rz. Accordingly,
the leading-order relations for the deviatoric stresses are given
by

Σrr =Σzz =

− 1
2
Σθθ = µ̃0Crr

∂U

∂Z
, Σrz = µ̃0Crz

∂U

∂Z
,

(62)

where

Crr = C4,

Crz = 1 +
1
2

[
f̃(b1) + f̃(b3) + g̃(K)(Brr + Bzz)

]
. (63)

For the isotropic ice,Crr = 0 andCrz = 1. With increasing
strength of anisotropy,Crr grows, whileCrz decreases (but
remains positive). The normalized stress invariantJ , given by
(49), becomes, to leading order,

J = ϑΣ2
rz(1 + 3α2), α = Crr/Crz. (64)

In order to solve the above leading-order equations, we,
essentially, follow the method applied in [14,16]. The new fea-
tures in this analysis are: (1) the inclusion of the ice anisotropy
in the flow problem, (2) no stream function is used to construct
the solution, and (3) a different method is applied to solve
the ensuing differential equation for the free surface elevation
functionH(R). Hence, we start from integration of equations
(54) with the boundary conditions (56), which yields the pres-
sure and shear stress fields

P (R, Z) = H(R)− Z, Σrz(R,Z) = −Γ (R)[H(R)− Z].
(65)

These two relations define the pressurePb and shear stress
Σrzb at the baseZ = F (R) as

Pb(R) = ∆(R), Σrzb(R) = −Γ (R)∆(R),
∆(R) = H(R)− F (R),

(66)

where∆(R) is the ice thickness. With the latter stress compo-
nents, the sliding law (61) determines the leading-order hori-
zontal velocity at the base,Ub, as

Ub(R) = −Γ (R)
Λ(R)

, (67)
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where it is assumed that the friction coefficientΛ depends only
on the positionR, that is, does not depend on stress and tem-
perature. The kinematic condition at the bed, (60), expresses
then the basal vertical velocityWb by

Wb(R) = β(R)Ub(R)−B(R), (68)

where the basal melt rate is assumed to depend only onR. The
basal velocity components (67) and (68) are used as boundary
conditions in integration of the flow equations over the depth
Z in order to determine the velocity field inside the ice sheet.
Accordingly, we eliminateΣrz from (65)2 by using the last
of the constitutive relations (62), and then, by integrating the
resulting equation forU , we obtain

U(R, Z) = Ub(R) + G1(R,Z), (69)

where the functionG1 is defined by

G1(R,Z) = −Γ (R)

Z∫

F

H(R)− Z ′

µ̃0(R, Z ′)Crz(R,Z ′)
dZ ′. (70)

The prime denotes a running integration variable. With the hor-
izontal velocity componentU given by (69), the vertical com-
ponentW is calculated from the incompressibility equation
(33). Thus,

W (R,Z) =

Wb(R)− 1
R

Ub(R)[Z − F (R)]− dUb

dR
[Z − F (R)]

− 1
R

G2(R,Z)− ∂G2

∂R
(R,Z), (71)

where

G2(R,Z) = −Γ (R)

Z∫

F

(Z − Z ′)(H − Z ′)
µ̃0(R, Z ′)Crz(R,Z ′)

dZ ′. (72)

The above leading-order relations express the stress and ve-
locity components in terms of the free surface elevation func-
tion H(R), which is yet unknown, and the given bed elevation
function F (R). In order to findH(R), we make use of the
kinematic conditions (57) and (60), prescribed at the surface
and the bed, respectively. Hence, we first difference both equa-
tions, and then substitute the expressions forU andW , (69)
and (71), into the resulting relation. This yields the differential
equation

d
dR

{RUb(R)∆(R)−RΓ (R)I(R)} = RQ∗[R, H(R)],
(73)

whereQ∗ = Q−B, andI(R) is defined by

I(R) =

H(R)∫

F (R)

(H − Z ′)2

µ̃0(R, Z ′) Crz(R, Z ′)
dZ ′. (74)

Integration of (73) from the divideR = 0 to the margin
R = RM , due toI(RM ) = 0, gives the relation

RM∫

0

RQ∗[R, H(R)] dR = 0, (75)

stating that there is no net flux of mass into the sheet. In other
words, the global mass of ice remains constant, which is con-
sistent with the steady flow assumption.

Equation (73) is second-order for the functionH(R), since
∆(R) = H(R)−F (R) andΓ (R) = H ′(R). We solve (73) by
transforming it into an equivalent set of two first-order equa-
tions. To this aim, denote the expression in curly braces in (73)
by

K(R) = −RΓ (R)
{
Λ−1(R)∆(R) + I(R)

}
, (76)

where we have substituted (67) forUb. Then, (73) becomes a
first-order equation

dK

dR
= RQ∗[R,H(R)]. (77)

This equation is solved overR ranging from zero to the margin
atRM . Since atR = RM ∆ = 0, henceI(R) = 0 andK = 0,
the boundary conditions for (77) are expressed by

K(0) = 0, K(RM ) = 0. (78)

In terms ofK, (76) expressesΓ (R) = H ′(R) as

dH

dR
= − K(R)

R {Λ−1(R) ∆(R) + I(R)} , (79)

which is the other first-order equation, to be solved along with
(77). The boundary conditions for (79) are defined by

H(0) = HD, H(RM ) = F (RM ) , (80)

whereHD is the free surface elevation at the ice sheet centre
(which is called the ice divide), andRM is the place where
H = F , that is,∆ = 0; bothHD andRM are unknown quan-
tities that need to be calculated as part of the solution.

We note in passing that the mechanism of the anisotropic
fabric evolution is represented in our leading-order solutions
by the two functionsCrz andCrr which enter the denomina-
tors of the integrands in (70), (72) and (74) (Crr is involved
implicitly through the invariantJ , see (47) and (64)).

6. Numerical calculations and illustrations
The two first-order differential equations (77) and (79) for the
free surface profileH(R) form, in view of the conditions (78)
and (80), a two-point boundary-value problem. The fact that
the position of one of the endpoints, the marginRM , is un-
known adds substantially to the numerical complexity of the
problem. A shooting method has been applied to solve the
equations. First, for given distributions of the fabric functions
Crz andCrr, trial values ofHD andRM are assumed, and
then, starting from the endpointsR = 0 andR = RM and
moving inwards, numerical integration is carried out by us-
ing a Runge-Kutta-Fehlberg scheme with an adaptive step size.
The routine is repeated until the elevationH and the value of
the functionK are matched at a chosen interior fitting point.
The validity and accuracy of the solution obtained is verified
by employing the integral property (75). Having foundH, the
flow field variables (the velocities and their gradients) are eval-
uated and the distributions of the functionsCrz andCrr are
updated, before starting calculations to find the next approxi-
mation forH. Such iterations between the fabric and the flow
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fields are repeated until a convergent solution is obtained; the
first iteration is started from the isotropic fabric, for which
Crz = 1 andCrr = 0. Simultaneously, in each iteration, a
set of five hyperbolic partial differential equations defined by
(27) is solved to follow the evolution of the fabric along ice
particle paths (streamlines). The paths start at the free surface
in the accumulation zone (Q > 0), whereF = I, pass through
the interior of the ice sheet, and end either at the free surface
in the ablation zone (Q < 0), or at the bed if basal melting
occurs (B > 0). In calculations,500 basic integration points
alongR were used to solve (77) and (79) forK(R) andH(R),
100 points along the vertical were applied to perform all depth
integrations, and up to about5000 basic intervals were needed
to calculate deformation gradients along the longest character-
istics (streamlines).

The results presented below have been obtained for the
flat, horizontal bed,F = 0. The adopted characteristic mag-
nitudes areh∗ = 2000 m and v∗ = 1 m yr−1, implying
ε = 0.00167 ∼ 1/600, so that the length unit in the ra-
dial direction is1200 km, and the horizontal velocity unit is
600 m yr−1. The basal friction coefficient isΛ = 10. The ice
accumulation distribution functionQ has been adopted in the
form proposed by Morland [14]

Q = Q∞ − (Q∞ −Q0) exp(−H/H∗), (81)

whereQ∞ andQ0 define the accumulation rates atH → ∞
andH = 0 respectively, andH∗ is a decay height. In the sim-
ulations the valuesQ∞ = 0.5, Q0 = −1, andH∗ = 0.25 have
been used. No basal melt has been assumed, soB = 0 and
Q∗ = Q. The adopted temperature distribution function, also
from [14], is expressed by

T1 = − 4
5H + 1

2 (H−Z)
{
1− 1

4∆
[
∆− 1

2 (H − Z)
]}

. (82)

Fig. 2. Free surface profilesH(R) for isotropic and anisotropic ice
with different combinations of enhancement factorsEa andEs

As first, in Fig. 2 we illustrate the effect of the ice
anisotropy on the free surface profileH(R). Shown are the re-
sults obtained for different combinations of enhancement fac-
tors, Ea andEs, defining the limit strength of anisotropy in
compression and shear (for isotropic ice bothEa andEs are
unity). The combination ofEa = 3 and Es = 8 has been
measured in laboratory and describes the viscous properties of
so-called warm ice [18,2], that is the ice at near melting tem-
peratures and high strain-rates, at which some recrystallization

processes that enhance the ice deformation are active. The re-
sults presented indicate that the influence of the ice anisotropy
is more pronounced on the ice sheet extentRM , than on the ice
thicknessHD at the divideR = 0. For the most anisotropic ice
illustrated in the figure (dashed line), the sheet span increases
by about19% compared to the isotropic ice (solid line), while
the divide thickness decreases by about8%. In physical units,
this is equivalent to the span increase by127 km, and the di-
vide thickness decrease by90 m.

Fig. 3. Horizontal velocity depth profiles: (a) atR = RM/2 for
isotropic and anisotropic ice with different combinations of enhance-
ment factors; (b) at different locationsR/RM for anisotropic ice de-

fined by the factorsEa = 3 andEs = 8

In Fig. 3 we show depth profiles of the scaled horizon-
tal velocityU , plotted against the normalized elevationZ/H.
In Fig. 3a the velocity profiles atR = RM/2, for the same
ice sheet geometry and the types of ice as those illustrated in
Fig. 2, are compared. We observe that the anisotropy of ice
significantly affects the velocity field across the glacier. An in-
teresting feature is the decrease of the basal horizontal velocity
Ub with increasingEs, that is, with increasing ease of shear, so
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that the fastest flowing ice near the bed is the isotropic (i.e., the
‘stiffest’) ice. On the other hand, the fastest flowing ice at the
free surface is, as could be expected, the most anisotropic one.
Figure 3b displays the distributions of the velocityU at differ-
ent locationsR/RM in the flow of ice defined by the enhance-
ment factorsEa = 3 andEs = 8. We note that the velocities
vary considerably down the ice sheet, growing steadily with in-
creasing distance from the divide. The latter is a consequence
of the increasing area of the accumulation zone between the
divide and a given locationR, requiring increasing horizon-
tal velocities to transport the ice from the central region of the
glacier towards its margin.

Fig. 4. Distributions of the viscosity factorCrz : (a) along the sym-
metry axisZ and (b) along the bedF = 0, for anisotropic ice with

different enhancement factorsEa andEs

Figure 4 illustrates the variation of the functionCrz down
the ice divide (the symmetry axisZ) and along the ice base
F = 0, for the same anisotropic ice parameters as those used
in the previous plots (for the isotropic ice this function is iden-
tically unity). The functionCrz serves as a factor multiplying

the isotropic ice viscositỹµ0, as can be seen in the relevant
relations derived in Section 5. Hence, the magnitude ofCrz

indicates how the ice shear viscosity changes compared toµ̃0

as the anisotropic fabric evolves in the material. We see in the
plots (a) that the viscosity decreases in a monotonic manner
as the ice, undergoing uni-axial compression, descends down
the divide. Reaching the bed, the ice deforms mainly by shear-
ing, with its rate increasing with the distance from the divide
R = 0. The growing shear deformation leads to the reduction
of the shear resistance of the medium, reflected by the progres-
sive decrease in the shear viscosity, until a limit value has been
attained. This mechanism is demonstrated well by the plots (b),
showing that the ice at the most part of the glacier base has a
nearly constant viscosity, equal to the limit shear viscosity (for
which the viscosity factor is given byCrz = 1/Es, equal to
0.125 for the most anisotropic ice, illustrated by the dashed
line).

Fig. 5. Free surface profilesH(R) for flows with different basal melt
ratesB and temperature distributionsT , for anisotropic ice defined
by the enhancement factorsEa = 3 andEs = 8. Corresponding

isotropic ice profiles are plotted in thin lines

Finally, in Fig. 5 we show the effects of basal melt rate and
the temperature distribution on the ice sheet geometry. Pre-
sented are the free surface profiles for the flows of the most
anisotropic ice (Ea = 3 andEs = 8) for three different melt
rates,B = 0 (no basal melt),B = 0.05 andB = 0.10, all
for the temperature distributionT1 given by (82). Additionally,
we also show the surface profileH(R) for no basal melting,
but with a different temperature distribution, denoted byT2.
The latter is the distribution in which the ice is assumed to
have, at a givenR, a constant temperature that is an average
of the corresponding surface and base temperatures prescribed
by (82). Hence,T2 defines the surface temperature which is
higher, and the base temperature which is lower, than the re-
spective temperatures given byT1. In the figure, the profiles
for the anisotropic ice (plotted in heavy lines) are compared
with the corresponding results for the isotropic ice (thin lines
in matching styles). We note that the presence of basal melt-
ing significantly increases the volume of ice in steady flow,
increasing both the lateral spanRM and the divide thickness
HD by approximately the same rates when compared to the no
basal melt flow. The comparison of the free surface profiles for
the anisotropic and isotropic ice indicates that the anisotropy
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effects, reflected by flattening of the sheet, are similar in the
three cases ofB investigated. Therefore, it appears that the
basal melting does not modify considerably the overall be-
haviour of the anisotropic ice sheet. The plots forB = 0 and
two different temperature distributions,T1 andT2, demonstrate
that the influence of temperature is moderate, leading to a rel-
ative decrease in the radial spanRM by about4% for the dis-
tribution T2, that is, when the ice at the glacier base is colder,
and hence more viscous, than it is in the case of the tempera-
ture fieldT1.

7. Conclusions
We have analysed a steady, axially symmetric polar ice sheet
flow problem in which, for given bed topography, tempera-
ture field, basal melt conditions and ice accumulation/ablation
rates, an a priori unknown geometry of the free surface of
the sheet is sought. The major feature in this study, com-
pared to the conventional isotropic ice models, is the incorpo-
ration in the analysis of the mechanism of evolving anisotropy
of ice. The flow problem has been simplified by applying a
method of asymptotic expansions, and the resulting two-point
boundary-value problem for leading-order differential equa-
tions has been solved, on an initially unknown domain, by a
numerical method.

The results of simulations, performed for experimentally
measured rheological parameters pertaining to the ice which is
known in glaciology as ‘warm ice’, show that the anisotropy
of the medium plays a significant role in the flow of glaciers.
The free surface profiles for the anisotropic ice are distinctly
flatter than those for the isotropic ice. For the ice accumula-
tion and temperature distributions adopted in the calculations,
the predicted lateral extent of the anisotropic ice sheet is about
one-fifth greater than that in the case of the isotropic ice, and
the maximum ice thickness is about one-tenth smaller, respec-
tively. The velocity profiles across the depth of the ice are also
affected by the evolution of the ice fabric: the basal horizon-
tal velocities for the anisotropic ice are significantly smaller,
and the free surface velocities are significantly greater, than the
corresponding quantities for the isotropic ice. The occurrence
of ice melting at the base has proved to be little important in
terms of the normalized velocity distributions in the ice sheet,
though it has a considerable effect on the overall volume of the
glacier in steady flow.

We have applied here a constitutive law which accounts for
the mechanism of ice crystal lattice rotation. Future theoreti-
cal and numerical developments should also attempt to include
other phenomena that can influence the overall behaviour of
polar ice sheets. First of all, the microprocesses of so-called
migration recrystallization and crystal polygonization should
be incorporated in the ice flow analysis. However, satisfactory
constitutive equations for the description of such processes
have not been formulated yet, and without these equations no
significant progress in the area of large-scale polar ice sheet
modelling is possible.
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