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used for the purpose. In addition, a low-pass filter with a cut-
off frequency of 900 kHz was employed to smooth the tested 
signal. The recording time signal was limited to 240 s due to 
sampling frequency and the results were plotted in the form of 
spectrograms. The spectrograms were developed using a window 
algorithm of Short Time Fourier Transform (STFT) with a Ham-
ming window for their graphic visualisation. Each graphic box 
consisted of 17,640 signal samples; the spectrumcalculated from 
a consecutive 1647 samples located inside the box in a place 
where the signal achieved maximum values and which was 
divided into 2-kHz wide bars.

Neural networks were used to analyse AE signals generated 
while the tool steel was being austempered. To trace changes of 
AE signal, a software developed by Z. Ranachowski was used. 
The software enables the researcher to split the obtained test 
signal into separate segments which results in it being possible 
to find AE events within each of the separated segments and their 
average energy. Then, spectral characteristics were plotted for all 
the analysed segments. Spectral characteristics are presented as 
functions of frequency and represent spectral power density. The 
spectral characteristics make it possible to determine the power 
spectrum of the AE signal in the selected frequency range. The 
processed characteristics are vectors of patterns recognised by the 
artificial neural network. Afterwards, a network learning process 
was carried out that consisted in modifying the organisation of 
the developed neural network with an artificial neural network 
built of two layers being applied. An algorithm of “backward 
propagation of errors” was used to learn the vector of pattern 
features. The process of network learning consisted in a series 
of repetitions of the algorithm for all patterns successively. At 
the network’s output, a signal was received that was dependent 
on the vector of features set at network input. At the final stage, 
a reaction of network outputs to the set patterns was tested and 
the relationship of AE occurrence frequency as a function of 
time was plotted.

3. Results of the research

An analysis of the microstructure of steel subjected to aus-
tempering at temperatures of 130°C, 160°C and 180°C was car-
ried out. The etching of the microsection surface was performed 
using Vilella and Nital reagents. Details of microstructure are 
shown in Figs. 4-6.

Structural objects of butterfly morphology were observed 
in the 1st stage of the phase transition after austempering at 
130°C and 160°C respectively. Their shape was similar to that 
observed by many previous researchers and well described by 
them in the literature [17]. Bainitic transformation takes place in 
two stages. In the first stage, a lower bainite with midrib arises. 
In images of microscopic examination, Figs. 4,5, it is present 
in the form of dark plates. The midrib is a twinned thin-plate 
martensite. In the second phase, a classic lower bainite occurs. 
Bright areas of the microscopic image indicate martensite with 
retained austenite (RA). In Fig. 6, lower bainite was observed 

as the dominant component. Such morphology is characteristic 
for this temperature range. 

AE signal spectrograms were generated for steel C105U 
during austempering in a selected range of temperatures and 
are shown in Fig. 7.

Fig. 4. Details of the microstructure of steel C105U after austempering 
at 130°C, lower bainite with a midrib etched with Nital

Fig. 5. Observation of microstructure details showing bainite plates with 
a midrib after austempering at 160°C, etched with Vilella

Fig. 6. Observation of microstructure details showing bainite plates dur-
ing further transformation after austempering at 180°C, etched with Nital
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b)
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Fig. 7. EA signal power density spectrograms for steels C105U in 
austempering at temperatures of: a) 130°C b) 160°C c) and 180°C, 
horizontal axis-registration time, vertical axis-frequency

The spectrograms represent a spectrogram of signal power 
density for every moment of time of the conducted test. Dif-
ferences in the intensity of the spectral band in the case of test 
specimens are slight. Generally, spectral components increased 
by a small amount at temperatures of 130°C and 180°C. This 
was due to the fact that the first of the indicated temperatures 
is a temperature near Ms of the tested steel. In this temperature 
range, the intensity phase transition is lower. An increase in 
temperature induces an increase in component values of the 
spectrum, which is observable at 180°C.

In a later stage, an analysis of the AE signal was undertaken 
using the neural network. For this purpose, the AE signal was 
divided into segments of time duration equal to 7.35 ms. In 
these segments, AE events of different spectral characteristics 
and energy levels were determined. Three ranges of energy 
were  observable by the differentiation of event energy. Events 
up to 10,000 pJ were assigned to the high energy range, events 
 1000-5000 pJ to the medium range and the low energy events 
were up to 1000 pJ. In the next step, spectral characteristics were 
made and are presented in Fig. 8.

Spectral power density for high energy events have con-
siderably higher values than the densities for medium and low 
energy events. Events of high level energy have maximum 
characteristics within a range of 150-250 kHz and spectral power 
densities within 40-45 dB. Medium energy events had maximum 
values of power density of the signal within a range of approx. 
20-25 dB whereas low energy events had spectral power densi-
ties near acoustic noise.

Spectral characteristics in the form of files were used as 
patterns of features recognised by the artificial neural network. 
A process of network learning was conducted that consisted in 
applying a series of repetitions of the algorithm for all vectors by 

using suitable learning sequences. The artificial neural network 
at the output generated a signal dependent on the feature vector. 
After the results were graphically represented, the relationships 
of AE event frequencies as a function of time are presented in 
Figs. 9-10. 

The results of the network learning process indicate a de-
tection of events in the signal that have spectral characteristics 
similar to the pattern set for the network, and thus the origin of 
the events from different processes. The high energy events are 
generated approx. 8 seconds after the start of the process. The 
result obtained indicates the effect of AE events originate from 
the formation of midrib that is a twinned thin plate martensite. 
The highest intensity of medium energy event generation in the 
tested process for signals obtained for steel austempering at 
130°C was within the range 20-40 seconds while , at 160°C it 
was within 20-50 seconds and at 180°C it was between 20-50 
seconds. After that, the events decreased rapidly. The dynam-

a)

b)

c)

Fig. 8. Spectral characteristics for steel C105U indicating event ener-
gies of the applied segments:1-of high energy of events, 2 of medium 
energy events and 3 of low energy events corresponding to a) 130°C, 
b) 160°C, and c) 180°C








